首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We present a study of the degradation of phosphor-based broadband (~ 90 nm spectral peak width) colour and white LEDs. Specifically, our study looked at the reliability of the blue-emitting GaN/InGaN pump chip and the overlying phosphor in these LEDs. We have investigated thermal degradation arising from heat generation in both the pump chip and the colour-converting phosphor. The robustness of the pump chip in 1 W broadband power LEDs was examined by driving them with various dc and pulsed waveforms at different temperatures. Both catastrophic and long term degradation of pump chips was investigated. Long term degradation behaviour of phosphors was studied by both ex situ and in situ heating of phosphors for hundreds of hours while their total light output was monitored. Optical energy storage in phosphors and its bearing on phosphor degradation is also discussed.  相似文献   

2.
ZnO nanowires have been successfully grown by thermal oxidation of metallic zinc films at 430 °C. Polycrystalline zinc films were deposited on Si (100) substrates by RF magnetron sputtering utilizing discharge power from 70 to 180 W. Experimental results show that 70 W discharge power results in the formation of porous zinc nanoparticles that prevent zinc atom from diffusion and thus does not result in the formation of ZnO nanowires by subsequent thermal oxidation. By increasing discharge power to 120 W the zinc film transforms to Zone II with a columnar structure, while further increase in discharge power to 180 W results in re-crystallization and formation of micron-sized hexagonal structures on the surface. Vertically aligned ZnO nanowires can only be obtained by thermal oxidation of columnar zinc films that exhibit a field emission threshold of 5.3 V/μm (at a current density of 10 μA/cm2) with a field enhancement factor of 1834. A target current density of 0.75 mA/cm2 is achieved with a bias field less than 10 V/μm.  相似文献   

3.
We present a method to determine the average device channel temperature of AlGaN/GaN metal–oxide–semiconductor heterostructure field effect transistors (MOSHFETs) in the time domain under continuous wave (CW) and periodic-pulsed RF (radiation frequency) operational conditions. The temporal profiles of microwave output power densities of GaN MOSHFETs were measured at 2 GHz under such conditions and used for determination of the average channel temperature. The measurement technique in this work is also being utilized to determine the thermal time constant of the devices. Analytical temporal solutions of temperature profile in MOSHFETs are provided to support the method. The analytical solutions can also apply to generic field effect transistors (FETs) with an arbitrary form of time-dependent heat input at the top surface of the wafer. It is found that the average channel temperature of GaN MOSHFETs on a 300 μm sapphire substrate with the output power of 10 W/mm can be over 400 °C in the CW mode while the average channel temperature of GaN MOSHFETs on a SiC substrate with the same thickness only reaches 50 °C under the same condition. The highest average channel temperature in a pulsed RF mode will vary with respect to the duty cycle of the pulse and type of the substrate.  相似文献   

4.
The next generation packaging materials are expected to possess high heat dissipation capability. Understanding the needs for betterment in the field of thermal management, the present study aims at investigating the package level analysis on a high power LED. In this study, commercially available thermal paste was heavily filled with ceramic particles of aluminium nitride (AlN) and boron nitride (BN) in order to enhance the heat dissipation of the device. Different particle sizes of AlN and BN fillers were incorporated homogenously into the thermal paste and applied as a thermal interface material (TIM) for an effective system level analysis employing thermal transient measurement. It was found that AlN TIM achieve less LED junction temperature by a difference of 2.20 °C compared to BN filled TIM. Furthermore, among D50 = 1170 nm, 813 nm and 758 nm, the AlN at D50 = 1170 nm was found to exhibit the lowest junction temperature of 38.49 °C and the lowest total thermal resistance of 11.33 K/W compared to the other two fillers.  相似文献   

5.
《Optical Fiber Technology》2013,19(5):414-418
Single-mode, flatly broadened supercontinuum (SC) generated in a thulium two-stage fiber amplifier spanning nearly the mid-infrared band is reported. The output average power and 10 dB bandwidth of the obtained SC are over 2.3 W and 570 nm (from 1.95 μm to 2.52 μm), respectively. For wavelengths beyond 2.4 μm the output power was 495 mW constituting almost 21% of the total output power. Applying Tm-doped single-mode silica fibers as nonlinear and amplification media it was possible to extend the long wavelength cut-off to 2.7 μm.  相似文献   

6.
A Ku-band power amplifier is successfully developed with a single chip 4.8 mm AlGaN/GaN high electron mobility transistors (HEMTs). The AlGaN/GaN HEMTs device, achieved by E-beam lithography г-gate process, exhibited a gate-drain reverse breakdown voltage of larger than 100 V, a cutoff frequency of fT=30 GHz and a maximum available gain of 13 dB at 14 GHz. The pulsed condition (100 μs pulse period and 10% duty cycle) was used to test the power characteristic of the power amplifier. At the frequency of 13.9 GHz, the developed GaN HEMTs power amplifier delivers a 43.8 dBm (24 W) saturated output power with 9.1 dB linear gain and 34.6% maximum power-added efficiency (PAE) with a drain voltage of 30 V. To our best knowledge, it is the state-of-the-art result ever reported for internal-matched 4.8 mm single chip GaN HEMTs power amplifier at Ku-band.  相似文献   

7.
Using a 4,4′,4′′-tris(N-carbazolyl)-triphenylamine (TCTA) small molecule interlayer, we have fabricated efficient green phosphorescent organic light emitting devices by solution process. Significantly a low driving voltage of 3.0 V to reach a luminance of 1000 cd/m2 is reported in this device. The maximum current and power efficiency values of 27.2 cd/A and 17.8 lm/W with TCTA interlayer (thickness 30 nm) and 33.7 cd/A and 19.6 lm/W with 40 nm thick interlayer are demonstrated, respectively. Results reveal a way to fabricate the phosphorescent organic light emitting device using TCTA small molecule interlayer by solution process, promising for efficient and simple manufacturing.  相似文献   

8.
In this paper, the cost of a light emitting diode (LED) package is lowered by using a silicon substrate as the base attached to the chip, in contrast to the conventional chip-on-board (COB) package. In addition we proposed an LED package with a new structure to promote reliability and lifespan by maximizing heat dissipation from the chip. We designed an LED package combining the advantages of COB based on conventional metal printed circuit board (PCB) and the merits of a silicon sub-mount as a substrate. When an input current 500–1000 mA was applied, the fabricated LED exhibited the light output of approximately 112 lm/W at 29 W. We also measured and compared the thermal resistance of the sub-mount package and conventional COB package. The measured thermal resistance of the sub-mount package with a reflective film of Ag and the COB package were 0.625 K/W and 1.352 K/W, respectively.  相似文献   

9.
High average power, all-fiber integrated, broadband supercontinuum (SC) sources are demonstrated. Architecture for SC generation using amplified picosecond/nanosecond laser diode (LD) pulses followed by modulation instability (MI) induced pulse breakup is presented and used to demonstrate SC sources from the mid-IR to the visible wavelengths. In addition to the simplicity in implementation, this architecture allows scaling up of the SC average power by increasing the pulse repetition rate and the corresponding pump power, while keeping the peak power, and, hence, the spectral extent approximately constant. Using this process, we demonstrate >10 W in a mid-IR SC extending from ~0.8 to 4 μm, >5 W in a near IR SC extending from ~0.8 to 2.8 μm, and >0.7 W in a visible SC extending from ~0.45 to 1.2 μm. SC modulation capability is also demonstrated in a mid-IR SC laser with ~3.9 W in an SC extending from ~0.8 to 4.3 μm. The entire system and SC output in this case is modulated by a 500 Hz square wave at 50% duty cycle without any external chopping or modulation. We also explore the use of thulium doped fiber amplifier (TDFA) stages for mid-IR SC generation. In addition to the higher pump to signal conversion efficiency demonstrated in TDFAs compared to erbium/ytterbium doped fiber amplifier (EYFA), the shifting of the SC pump from ~1.5 to ~2 μm is pursued with an attempt to generate a longer extending SC into the mid-IR. We demonstrate ~2.5 times higher optical conversion efficiency from pump to SC generation in wavelengths beyond 3.8 μm in the TDFA versus the EYFA based SC systems. The TDFA SC spectrum extends from ~1.9 to 4.5 μm with ~2.6 W at 50% modulation with a 250 Hz square wave. A variety of applications in defense, health care and metrology are also demonstrated using the SC laser systems presented in this paper.  相似文献   

10.
We demonstrate simplified doping-free orange phosphorescent organic light-emitting diodes (OLEDs) based on ultrathin emission layer. The optimized orange device has the maximum current efficiency of 52.1 cd/A and power efficiency of 36.3 lm/W, respectively. Efficient simplified doping-free white OLEDs employing blue and orange ultrathin emission layers have excellent color stability, which is attributed to the avoidance of the movement of charges recombination zone and no differential color aging. One white device exhibits high efficiency of 33.6 cd/A (30.1 lm/W). Moreover, the emission mechanism of doping-free orange and white OLEDs is also discussed.  相似文献   

11.
The thermal state of the electronic devices used in many engineering fields must be controlled. The maximum temperature does not exceed the value recommended by the manufacturer to prevent a decrease of their reliability, malfunction or decommissioning. The junction temperature of the Quad Flat Non-Lead (QFN) device which often equips the electronic assemblies is affected by the thermal characteristics of its components, in particular the thermal conductivity of the molding compound (resin) used for the package encapsulation. This work deals with the QFN32 and QFN64 models widely used in the field of smart building. These devices may be tilted of any angle from the horizontal and vertical positions, depending on where they are located in the considered building. The packages located in small boxes are subjected to air natural convection. The 3D numerical approach based on the volume control method considers several configurations obtained by varying the generated power between 0.01 and 0.1 W by steps of 0.01 W, corresponding to the partial operation. The junction thermal state is determined for many values of the resin's thermal conductivity ranging between − 80% and + 100% of its average value and inclination of the devices varying between 0 and 90° (horizontal and vertical positions respectively) by steps of 15°. The results of the numerical solution are confirmed by thermal and electrical measurements carried out in situ on various prototypes. The deviation between measurements and calculations is low, ranging between − 3 and + 7%. New and accurate relationships are proposed, allowing to improve the thermal design of the QFN32 and QFN64 packages by determining their junction temperature for any combination of the considered generated power, tilt angle and thermal conductivity of the encapsulating resin. The control of the thermal aspect allows to enhance substantially the reliability of these widely used electronic devices.  相似文献   

12.
This study reports on the fabrication of a chalcogen-based thermoelectric power generation (TEG) device using p-type Bi0.4Sb1.6Se2.4Te0.6 and n-type Bi2Se0.6Te2.4 legs. Electrical power generation characteristics were monitored by changing both the temperature conditions and the number of p–n couples required to generate maximum power. The significance of the resistances including the internal resistance and contact resistance between legs and electrodes, are discussed. The maximum output power obtained with the 18 p–n couples device was 273.2 mW under the thermal condition of TH=523 K hot-side temperature and ΔT=184 K temperature difference.  相似文献   

13.
《Optical Fiber Technology》2013,19(4):304-308
We propose a wavelength-tunable thulium-doped single mode fiber laser with a digitally controlled micro-mirror array device. The fast and flexible lasing wavelength switching property was achieved by the pixelated spatial modulation of the micro-mirror array. The proposed laser provides a maximum output power of 160 mW with 24% slope efficiency and a narrow output linewidth of less than 0.03 nm. The operating wavelength is continuously tunable from 1863 nm to 1937 nm with a wavelength selectivity accuracy of less than 0.4 nm and a fast switching time of ∼75 μs.  相似文献   

14.
In case of battery electric cars, market data show a traditional exponential gradient of sales figures, known from other technology transitions. The worldwide installed wind and photovoltaic capacity show also an exponential gradient. Even the power density of power electronics is growing exponentially.Power electronics is a prerequisite to enable the exponential growth of power density.Requirements on power electronic packaging technologies are electric performance, thermal performance and robust design. Due to the lack of bond wires, SMD capacitors can be mounted close to semiconductors, resulting in a minimization of parasitic inductance. Thermally, the packaging technology benefits from heat spreading inside the copper leadframe and thin dielectric layers. It obtains a thermal resistance of 0.5 K/W, and there is potential to further reduce the thermal resistance by alternative dielectric material. The thermal resistance can be further reduced to at least 0.42 K/W by the construction of a double side chip cooling.A robust design can be offered by the combination of a chip copper metallization connecting to copper microvias connecting to the top copper layer, which means no difference in coefficients of thermal expansion. On the bottom side, a silver sinter layer offers a reliable connection between chip and leadframe.This paper describes production process optimizations, thermal optimization possibilities, power cycling lifetime measurements and first conductive anodic filament lifetime measurements at 1000 V DC. The outlook onto an integrated 120 A 700 V SiC MOSFET demonstrator is given.  相似文献   

15.
This paper presents a compact, reliable 1.2 V low-power rail-to-rail class AB operational amplifier (OpAmp) suitable for integrated battery powered systems which require rail-to-rail input/output swing and high slew-rate while maintaining low power consumption. The OpAmp, fabricated in a standard 0.18 μm CMOS technology, exhibits 86 dB open loop gain and 97 dB CMRR. Experimental measurements prove its correct functionality operating with 1.2 V single supply, performing very competitive characteristics compared with other similar amplifiers reported in the literature. It has rail-to-rail input/output operation, 5 MHz unity gain frequency and a 3.15 V/μs slew-rate for a capacitive load of 100 pF, with a power consumption of 99 μW.  相似文献   

16.
Vertical light-emitting diodes (VLEDs) were successfully transferred from a GaN-based sapphire substrate to a graphite substrate by using low-temperature and cost-effective Ag-In bonding, followed by the removal of the sapphire substrate using a laser lift-off (LLO) technique. One reason for the high thermal stability of the AgIn bonding compounds is that both the bonding metals and Cr/Au n-ohmic contact metal are capable of surviving annealing temperatures in excess of 600 °C. Therefore, the annealing of n-ohmic contact was performed at temperatures of 400 °C and 500 °C for 1 min in ambient air by using the rapid thermal annealing (RTA) process. The performance of the n-ohmic contact metal in VLEDs on a graphite substrate was investigated in this study. As a result, the final fabricated VLEDs (chip size: 1000 µm×1000 µm) demonstrated excellent performance with an average output power of 538.64 mW and a low operating voltage of 3.21 V at 350 mA, which corresponds to an enhancement of 9.3% in the light output power and a reduction of 1.8% in the forward voltage compared to that without any n-ohmic contact treatment. This points to a high level of thermal stability and cost-effective Ag-In bonding, which is promising for application to VLED fabrication.  相似文献   

17.
In this paper a novel low voltage (LV) very low power (VLP) class AB current output stage (COS) with extremely high linearity and high output impedance is presented. A novel current splitting method is used to minimize the transistors gate–source voltages providing LV operation and ultra high current drive capability. High linearity and very high output impedance are achieved employing a novel resistor based current mirror avoiding conventional cascode structures to be used. The operation of the proposed COS has been verified through HSPICE simulations based on TSMC 0.18 μm CMOS technology parameters. Under supply voltage of ±0.7 V and bias current of 5 μA, it can deliver output currents as high as 14 mA with THD better than ?53 dB and extremely high output impedance of 320 MΩ while consuming only 29 μW. This makes the proposed COS to have ultra large current drive ratio (Ioutmax/Ibias or the ratio of peak output current to the bias current of output branch transistors) of 2800. By increasing supply voltage to ±0.9 V, it can deliver extremely large output current of ±24 mA corresponding to 3200 current drive ratio while consuming only 42.9 μW and exhibiting high output impedance of 350 MΩ. Interestingly, the proposed COS is the first yet reported one with such extremely high output current and a THD even less than ?45 dB. Such ultra high current drive capability, high linearity and high output impedance make the proposed COS an outstanding choice for LV, VLP and high drive current mode circuits. The superiority of the proposed COS gets more significance by showing in this work that conventional COS can deliver only ±3.29 mA in equal condition. The proposed COS also exhibits high positive and negative power supply rejection ratio (PSRR+/PSRR?) of 125 dB and 130 dB, respectively. That makes it very suitable for LV, VLP mixed mode applications. The Monte Carlo simulation results are provided, which prove the outstanding robust performance of the proposed block versus process tolerances. Favorably the proposed COS resolves the major limitation of current output stages that so far has prevented designing high drive current mode circuits under low supply voltages. In brief, the deliberate combination of so many effective novel methods presents a wonderful phenomenal COS block to the world of science and engineering.  相似文献   

18.
《Microelectronics Journal》2015,46(2):198-206
In this paper, a highly linear CMOS low noise amplifier (LNA) for ultra-wideband applications is presented. The proposed LNA improves both input second- and third-order intercept points (IIP2 and IIP3) by canceling the common-mode part of all intermodulation components from the output current. The proposed LNA structure creates equal common-mode currents with the opposite sign by cascading two differential pairs with a cross-connected output. These currents eliminate each other at the output and improve the linearity. Also, the proposed LNA improves the noise performance by canceling the thermal noise of the input and auxiliary transistors at the output. Detailed analysis is provided to show the effectiveness of the proposed LNA structure. Post-layout circuit level simulation results using a 90 nm RF CMOS process with Spectre-RF reveal 9.5 dB power gain, -3 dB bandwidth (BW−3dB) of 8 GHz from 2.4 GHz to 10.4 GHz, and mean IIP3 and IIP2 of +13.1 dBm and +42.8 dBm, respectively. The simulated S11 is less than −11 dB in whole frequency range while the LNA consumes 14.8 mW from a single 1.2 V power supply.  相似文献   

19.
《Optical Fiber Technology》2014,20(6):694-701
Fiber optical parametric oscillators (OPOs), based on a highly-efficient four-wave mixing process in a χ(3) medium, are reviewed. Their capability to provide very large tuning ranges with high output power is discussed. A novel architecture for CW fiber OPOs is presented, which has allowed us to significantly extend the performance of these devices. To do so we used: (i) a highly-nonlinear fiber (HNLF) as the parametric gain medium; (ii) a narrowband tunable intracavity filter; (iii) a high output coupling fraction from the feedback loop (up to 3 dB). With these features, we have been able to obtain excellent performance in terms of output power and tuning range, even with a reduced pump power. With only about 2 W of pump power, we have obtained the following performances: (i) tuning range of 254 nm; (ii) output power in excess of 1 W at some wavelengths; (iii) external conversion efficiency in excess of 60% at some wavelengths; (iv) linewidth as low as 8 GHz.This architecture of fiber OPO can be used for providing narrow linewidth tunable high-power CW radiation over hundreds of nanometers. Such sources could find applications in remote sensing, optical communication, nonlinear optics, etc.  相似文献   

20.
A heterojunction device of Au/Fe-TPP/n-Si/Al was assembled by thermally evaporated deposition. The dark current density–voltage characteristics of device were investigated. Results showed a rectification behavior. Measurements of thermo electric power confirm that Fe-TPP thin film behaves as p-type semiconductors. Electronic parameters such as barrier height, diode ideality factor, series resistance, shunt resistance were found to be 0.83 eV, 1.5, 7 × 105 Ω and 2 × 1010 Ω, respectively. The Au/Fe-TPP/n-Si/Al device indicates a photovoltaic behavior with an open circuit voltage Voc of 0.52 V, short circuit current Isc of 2.22 × 10?6 A, fill factor FF of 0.49 and conversion efficiency 1.13% under white light illumination power 50 W/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号