首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the development of natural draft cooling towers diagnostics is presented. Diagnostic method is based on measurements of velocity and temperature fields of the airflow in the entire surface area of cooling tower and the raised phenomenological model of heat and mass transfer in a selected reference vertical segment of cooling tower. Velocity and temperature fields of the airflow were measured with the aid of a remote control mobile robot unit that was developed to enable measurements in an arbitrary measurement point above the spray zones over the entire cooling tower area. Topological structures of the humid air velocity profiles and temperature profiles above the spray zones were obtained at constant integral parameters of a power plant. Measurement results of temperature and mass flow characteristics of the air and water flows in a selected reference vertical segment of cooling tower are presented in the form of phenomenological dependence. Phenomenological dependence links local cooling tower efficiency, geometrical characteristics of spray elements, and air and water flow rates. In the concluding part, both methods are applied together on a selected segment of cooling tower, and local and integral cooling tower efficiency can be determined.  相似文献   

2.
In this paper, a mathematical model for a counterflow wet cooling tower is derived, which is based on one-dimensional heat and mass balance equations using the measured heat transfer coefficient. The balance equations are solved numerically to predict the temperature change of air and water, as well as the humidity as a function of the cooling tower high. Experimental measurements on two pilot-scale cooling towers were carried out in order to analyze the performance of different cooling tower filling materials. Also, the performance of other cooling tower elements, such as droplet separators and water spray nozzles, was investigated in the pilot experiments. The flow distribution, i.e. the velocity field, upstream to the filling material was predicted using the three-dimensional version of the computational fluid dynamics (CFD) code Fluent/uns, version 4.2. The calculated flow fields are presented for different distances between the inlet of the air and the filling material. In addition, the two-dimensional version of the CFD code Fluent/uns, version 4.2, was applied to predict the external airflow around the cooling tower and the backflow in different weather conditions in summer and winter. The research project was carried out in connection to an industrial cooling tower installation.  相似文献   

3.
The performance of a closed-circuit wet cooling tower (CWCT) with multiple paths having a rated capacity of 9 kW has been studied experimentally. When the CWCT has to operate with a partial load, the required quantity of cooling water reduces and thereby the velocity of the process fluid inside the tubes decreases. The velocity of the process fluid can be increased by installing blocking tubes in the heat exchanger. The test section in this experiment has multiple paths that have been used as the inlet for cooling water that flows from the top part of the heat exchanger. The heat exchanger consists of eight rows and 12 columns and the tubes are in a staggered arrangement. Heat and mass transfer coefficients and temperature drops were calculated with several variations including multiple paths. The results obtained from this study were compared with those reported and found to conform well. The investigation indicates that a CWCT operating with two paths has higher heat and mass transfer coefficients than with one path.  相似文献   

4.
《Applied Thermal Engineering》2007,27(14-15):2549-2558
Humidification of compressed air is important for humid air turbine cycle. In this paper, theoretical and experimental investigations are carried out to analyze and predict the humidification process in spray tower.For predicting the heat and mass transfer in the water droplet–air two-phase flow, a one-dimensional numerical model simulating the conservation of heat and mass of water and humid air was developed. The model considers the effect of droplet motion on the heat and mass transfer. Experimental data were obtained on a pressurized model spray tower at different pressures and water/air ratios, which had been adopted to validate the numerical model. Droplet diameter of the spray was measured and these data were used in the model. Predictions of outlet conditions of air and water for giving input conditions agree well with experimental data, which produces a maximal error of 7.3%. On the basis of the model, distributions of droplet velocity and volumetric heat transfer coefficient over height of the tower are predicted. The effect of droplet diameter on the characteristic performance of spray humidifier is also analyzed in the simulation.  相似文献   

5.
为了分析不同风量和喷淋水量对填料逆流闭式冷却塔热力性能的影响,建立和验证了带填料逆流闭式冷却塔热质交换的数学模型,基于焓差理论对模型计算的结果进行分析。结果表明:加入填料相当于对盘管区进口的喷淋水进行预冷,降低了喷淋水的平均温度,使带填料闭式冷却塔的冷却性能优于纯盘管闭式冷却塔;风量的增加可以提高带填料逆流闭式冷却塔和纯盘管逆流闭式冷却塔的热力性能,两种塔的冷却性能随风量增加的提升速率相同;喷淋水量的增加对纯盘管逆流闭式冷却塔的热力性能的影响较小,却可以较大幅度提高带填料逆流闭式冷却塔的热力性能。  相似文献   

6.
The performance of two evaporatively cooled heat exchangers is investigated under similar operating conditions of air flow rates and inlet hot water temperatures. The heat exchangers are plain and plate-finned circular tube types which occupy the same volume. Spray water, which is circulated in a closed circuit, is injected onto the exposed surfaces of the tubes and fins. The contact between air and spray water results in evaporative heat transfer. The tubes are copper, 10 mm o.d. The finned configuration is constructed by introducing 0.5 mm thick copper plates between the tubes, with a total area ratio of four. A substantial increase in heat transfer takes place for the plate-finned tubes. The increase is 92–140% for air velocities from 1.66 to 3.57 m s−1. A model is used to calculate the thermal performance of the plain and finned tubes assuming a constant spray water temperature in the heat exchanger. The wet-finned surfaces show low fin efficiency compared with dry surfaces. An energy index defined as the ratio of volumetric thermal conductance to air pressure drop per unit length is found to be close for the two heat exchangers. This reveals higher thermal utilisation of the occupied volume by the finned tubes with the same energy index.  相似文献   

7.
This study provides an experimental analysis on the heat transfer performance of a flat aluminum tube microchannel heat exchanger with spray cooling. The effects of water spraying rate, airflow rate, and relative humidity were investigated. The test results show that the heat transfer performance increased with increasing the water spraying rate but without the penalty of increased flow resistance at low spray conditions. This effect is further enhanced by increasing the water spraying rate. However, when the spraying rate is high, part of the nonevaporated drops attached to the fin surface and formed a liquid film, which caused the flow passage to become narrower. Further increase in the spraying rate resulted in part of the flow passages being blocked by the nonevaporated water drops and caused a region of poor heat transfer. The friction coefficient jumped drastically at this condition. This phenomenon deceased gradually with increasing airflow rate. High inlet air humidity resulted in the water accumulation phenomenon appearing at lower water spraying rates. The evaporative cooling effect decreased and flow friction increased. The test results just described show that the water spray is able to significantly improve the air-side heat transfer performance. The optimum spray rate for each airflow rate must be carefully determined.  相似文献   

8.
以湿冷机组自然通风冷却塔相关理论为基础,借助于CFD模拟软件,建立了火电机组湿式冷却塔的传热传质模型,主要的换热区域如填料、雨区和喷淋区采用离散相模型。由于冬季气温较低和塔内的换热不均,在冷却塔的填料下面、进风口处、基环面容易结冰,提出了在进风口处加装挡风板的方案,数值模拟分析结果显示,该方案改善了塔内温度场,有效的防止了塔内结冰。  相似文献   

9.
模型饱和器冷态喷雾场的实验研究   总被引:4,自引:3,他引:4  
王玉璋  翁史烈  王永泓 《动力工程》2003,23(1):2210-2214
针对HAT循环关键部件增湿饱和器内典型的传热,传质过程现象,为了最优化该过程和为今后数值分析提供有效的数据,设计了模拟饱和顺内传热,传质过程中的开放式冷态实验系统。使用相位多普勒分析仪DualPDA(Phase Doppler Analyzer)对冷态模型饱和器的喷雾场进行了详细的实验研究,测量了不同水压,不同气流速度下的喷雾场,得到喷雾场内液滴的三维平均速度分布,脉动速度分布,平均粒径大小分布等,分析了喷雾水压和鼓风气流速度对喷雾场的影响,分析结果表明,改良设计的离心喷嘴具用良好的喷雾性能和轴对称性,水压增大可以增大喷雾场中粒子速度,通量及降低平均直径,喷嘴喷雾长度随气流速度减小,气流速度可以改变喷雾场的分布,有利于液滴蒸发和液滴破裂。  相似文献   

10.
根据气水两相间热质传递原理,利用Fluent数值计算软件建立了APl000核电机组用20000m。淋水面积巨型冷却塔的三维计算模型,对双曲线塔筒的母线方程中的特征值及喉部半径的最优取值进行了计算验证,综合分析了特征值及喉部半径对塔内流场、进塔风量、蒸发水量和平均出塔水温的影响,得到了210m高巨型冷却塔的最优型体结构参数.计算结果表明:喉部半径与塔底半径的比值r0/r2=0.6--0.7、塔筒母线方程中的曲率特征值a=0.17~0.18时,冷却塔运行最优.  相似文献   

11.
以某逆流式自然通风常规冷却塔为研究对象,对其相同尺寸的高位收水冷却塔进行对比仿真分析,研究布置高位收水装置对冷却塔效果的影响.在多种运行工况下分别对常规冷却塔和高位收水冷却塔进行模拟计算,分析高位收水装置布置前后塔内空气流动和温度变化,以及冷却水平均温降的变化.结果表明,相较于常规冷却塔,同种条件下高位收水塔内通风量增...  相似文献   

12.
A silica gel–water adsorption chiller integrated with a closed wet cooling tower is proposed. This adsorption chiller consists of two vacuum chambers, each with one adsorber, one condenser and one evaporator. Vacuum valves were not adopted in this chiller in order to enhance the reliability. A novel heat recovery process was carried out after a mass recovery-like process to improve the coefficient of performance (COP). Integration of the closed wet cooling tower into the chiller could ensure the cleanliness of cooling water circulating in the chiller and also promote the convenient setup of the chiller. A transient one-dimensional mathematical model was adopted to study this adsorption chiller. The simulated results showed that the cooling power and COP were 10.76 kW and 0.51 respectively when the hot water inlet temperature, the chilled water inlet temperature, the air inlet wet bulb temperature and dry bulb temperature were 85, 15, 28 and 30 °C respectively.  相似文献   

13.
喷雾冷却是一种高热流密度的冷却方式,按传热机理的不同可以分为单相区和两相区。针对单相区,建立三维传热模型,利用CFD仿真技术对喷雾冷却过程进行数值模拟,并研究了喷雾的高度、流量密度等参数对喷雾冷却传热性能的影响规律。结果显示:当传热稳定时,传热面温度由圆心沿径向逐渐增高,并且随喷雾流量密度的增大,温度分布的均匀性变差;保持喷雾作用面积不变,增大喷雾流量或减小喷雾高度,喷雾的传热能力显著增强;数值模拟结果与实验数据吻合,验证了该模型的可靠性,可为喷雾冷却系统的设计、优化提供依据。  相似文献   

14.
Liquid desiccant cooling systems have the advantage over conventional compression systems of being able to operate with largely solar thermal energy sources, and of efficiently handling the latent load. The solar energy is used to regenerate the liquid desiccant by removing the water absorbed from air in the dehumidifier. A packed-bed liquiddesiccant (LiBr) dehumidification unit has been operated with varying air conditions and liquid streams and with three levels of packing (0, 28 and 40 cm). Number of transfer units (NTU) values of 2–2.5 were obtained in the best performing configuration; the corresponding height of transfer unit (HTU) values were 0.25–0.31 m. Overall, gas-side mass transfer coefficients calculated for the dehumidifier are made up of contributions from the packed bed and spray sections of the tower. With full packing and a higher solution flow rate, the overall Kya was 151.3 g mol/sm3 contact-volume log mean concentration driving force. Spray-only contacting at the higher solution flow rate gave a Kya of 15.7 g mol/sm3 contact-volume log mean concentration driving force. The individual mass transfer coefficients for the two sections have been separated; to the authors' knowledge, this is the first time the separate contributions of spray and packing have been quantified in a composite dehumidifier tower. Spray contributions were found to contribute from 10 to 70% of the mass transfer occurring in the dehumidifier, the higher percentages being found for a very inefficient deep bed and low liquid flow conditions.  相似文献   

15.
In this paper, the mathematical and physical models governing the flow, mass and heat energy of moist have been set up for an evaporative natural draft cooling tower. The models consider the effect of non-spherical shape of water drops on the flow, heat and mass transfer. Experimental data has been adopted to validate the numerical scheme. Average difference between the measured and the predicted outlet water temperature is 0.26°C. Distributions of the velocity components of the moist air, density, pressure, enthalpy and moisture content, the water temperature and its mass flux have been predicted. The simulation shows that some recirculation exits under the lower edge of the shell, where the air enthalpy, temperature, humidity and moisture content are higher, but the density is lower. The simulation also proves that the main transfer processes take place in the fill region where the percentage of latent heat transfer is predicted as 83%. However, about 90% of the heat energy is transferred via evaporation in the rain region although the total heat transfer rate there is very small compared to the fill region. Hourly performance of a natural draft cooling tower under the meteorological condition of Singapore has also been predicted.  相似文献   

16.
Cooling towers are widely used in many industrial and utility plants as a cooling medium, whose thermal performance is of vital importance. Despite the wide interest in cooling tower design, rating and its importance in energy conservation, there are few investigations concerning the integrated analysis of cooling systems. This work presents an approach for the systemic performance analysis of a cooling water system. The approach combines experimental design with mathematical modeling. An experimental investigation was carried out to characterize the mass transfer in the packing of the cooling tower as a function of the liquid and gas flow rates, whose results were within the range of the measurement accuracy. Then, an integrated model was developed that relies on the mass and heat transfer of the cooling tower, as well as on the hydraulic and thermal interactions with a heat exchanger network. The integrated model for the cooling water system was simulated and the temperature results agree with the experimental data of the real operation of the pilot plant. A case study illustrates the interaction in the system and the need for a systemic analysis of cooling water system. The proposed mathematical and experimental analysis should be useful for performance analysis of real-world cooling water systems.  相似文献   

17.
Simplified analytical models are developed for evaluating the thermal performance of closed‐wet cooling towers (CWCTs) for use with chilled ceilings in cooling of buildings. Two methods of simplification are used with regard to the temperature of spray water inside the tower. The results obtained from these models for a prototype cooling tower are very close to experimental measurements. The thermal performance of the cooling tower is evaluated under nominal conditions. The results show that the maximum difference in the calculated cooling water heat or air sensible heat between the two simplified methods and a general computational model is less than 3%. The analytical model distribution of the sensible heat along the tower is then incorporated with computational fluid dynamics (CFD) to assess the thermal performance of the tower. It is found that CFD results agree well with the analytical results when the air flow is simulated with air supply from the bottom of the tower, which represents a uniform air flow. CFD shows the importance of the uniform distribution of air and spray water to achieve optimum design. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The present work is focused on the computational analysis of heat and mass transfer in an indirect contact cooling tower. The main objectives of the study are to contribute to the understanding of heat and mass transfer mechanisms involved in the problem and to check the possibility of making use of a commercial computational fluid dynamics (CFD) code for simulating mass and heat transfer phenomena occurring in indirect cooling towers. The CFD model uses as boundary conditions the temperatures of the tubes obtained by a correlation model developed by Mizushina. The available mass transfer correlations for indirect cooling towers are presented and compared with a correlation obtained from CFD simulations. The assumption of analogy between heat and mass transfer is also discussed.  相似文献   

19.
ABSTRACT

This paper reports an investigation into a practical cooling issue on a type of fan-forced finned-tube heat exchangers used in Queensland's coal seam gas (CSG) industry. CSG compression facilities in some production sites suffered underproduction in recent summers because of frequent automatic engine shutdowns. The problem is not expected by the manufacturer's design. However, it is suspected of being related to the control systems on the compression facilities triggering the overheating-protection shutdowns due to possible deficiencies in one or some water/gas cooling loops in the facilities’ air-cooled heat exchangers. Therefore, to understand which heat exchangers and what exact reasons cause the unexpected cooling issue, an investigation has been carried out on the cooler units of the gas compression facilities. A field instrumentation measurement on one operating cooler unit has been done, followed by an analysis using a one-dimensional analytical model and a three-dimensional computational fluid dynamics model. The experimental results are used to validate both the models. Then the cooling performance of the cooler unit under the summer peak condition is predicted by the verified models. The prediction suggests that the water inlet temperature in one particular cooler section is higher than its upper limit defined by the manufacturer, due to poor cooling at high ambient temperatures. The lower cooling performance is caused by large reductions in the cooler air speed and total heat transfer coefficient, which are related to less efficiency of the cooler fans, more airflow resistance, and fouling on both sides of the finned tubes.  相似文献   

20.
An experimental study has been conducted to investigate the effects of hydrophilic surface treatment on evaporation heat transfer at the outside wall of various kinds of copper tubes. Plain, spiral, corrugated, and low-finned tubes were selected as test tubes. In this work, to increase the wettability of distilled water on copper tubes, a novel hydrophilic surface treatment method using plasma was employed. The experiments show that every kind of hydrophilic surface treated tube tested in the work exhibits superior evaporation heat transfer performance as compared with that of the same kind of untreated tube. It is found out that during the evaporation process, the high wettability of the surface obtained through hydrophilic treatment induces film flow on the tubes while sessile drops are formed on untreated tubes. The film has a smaller thickness as well as a greater heat transfer area than the sessile drops, and this yields higher heat transfer rate for hydrophilic surface treated tubes than that for untreated tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号