首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对在室内无线定位中采用加权质心定位法时精度较低且难以克服信号不稳定的问题,提出改进的BP神经网络方法。以接收信号强度(RSSI)为输入、二维平面坐标为输出建立网络结构,网络的初始权值和阈值用思维进化算法优化,并用边长3 m的正方形区域内的196个样本数据训练。实验结果表明,在27个预测点上可达到定位精度0.1 m。相比于BP网络以及BP网络和遗传算法的结合算法,该定位方法训练收敛时间短,定位结果稳定。  相似文献   

2.
在目标检测方法中,通过使用具有不同遮挡程度的数据集进行训练,能够提升目标检测算法对遮挡的不变性,但现实生活中的数据集往往存在长尾效应。因此提出一种基于对抗网络与卷积神经网络的目标检测方法。通过对抗网络在输入数据上进行计算得到不同遮挡程度的样本,使用Faster RCNN算法进行训练提升遮挡不变性,以此提高算法检测精度。实验结果表明,该方法与Faster RCNN相比,在VOC 2007数据集上平均精度提升了2.2个百分点,在VOC 2007和VOC 2012联合数据集上平均精度提升了1.3个百分点。  相似文献   

3.
《软件》2019,(8):6-8
目前人脸识别技术被广泛应用于实际生活各个领域,尤其是在实时视频场景下应用越来越普及,因此对人脸识别的研究具有重大价值。通过应用Keras框架和深度学习相关知识构建深度卷积神经网络,训练出有效的人脸识别模型,并应用到实时视频场景进行人脸检测和识别,最后通过实验表明此方法能够有较高的正确率,并能准确识别视频中的人脸。  相似文献   

4.
郝昌俭  杨庚 《计算机应用》2007,27(B06):201-202,204
通过应用无线传感器网络定位技术,构建了一个人员监控系统。系统可以对人员位置进行实时定位,避免了因事故发生却不能确定事故地点造成的问题,减少了许多不必要的损失。目前,该系统已经处于运行和维护阶段,运行效果良好。  相似文献   

5.
《软件》2017,(6):30-34
针对现有基于机器学习的文本分类中由于数据噪点和特征不稀疏所导致学习精确度不高,深度不够等问题,本文提出了一种基于卷积升级网络的文本分类改进方法。首先利用一种新的TF-IDF统计法和Word2vec的skip-gram模型提取出描述文本的特征,然后通过卷积神经网络训练,得到更深层次的特征学习,最后使用softmax操作算出类别的概率分布,从而实现对职位描述文本的分类。实验结果表明,相比基于knn的传统分类方法,本文所设计的方法精确度更高。  相似文献   

6.
张文烨  尚方信  郭浩 《计算机应用》2021,41(5):1299-1304
浮点数位宽的深度神经网络需要大量的运算资源,这导致大型深度神经网络难以在低算力场景(如边缘计算)上部署.为解决这一问题,提出一种即插即用的神经网络量化方法,以压缩大型神经网络的运算成本,并保持模型性能指标不显著下降.首先,基于Octave卷积将输入特征图的高频和低频成分进行分离;其次,分别对高低频分量应用不同位宽的卷积...  相似文献   

7.
图像超分辨率是计算机视觉领域的经典问题。使用深度神经网络来解决图像超分辨率的问题目前得到越来越多的研究学者的关注和青睐。为改善基于卷积神经网络的图像超分辨率方法的图像生成效果,提出一种改进的方法。在神经网络层中加深网络层数,并且针对加深网络可能出现的退化现象引入残差网络结构,并将图像上采样步骤放入网络中。实验表明,在与传统的插值法和原始的基于卷积神经网络方法的对比中,该优化方法生成的图像观感更加锐利清晰、细节丰富,而且无论在峰值信噪比和结构相似性上均有明显提高,验证了该方法的有效性。  相似文献   

8.
雷达目标检测近年来一直是雷达信号处理中的重要任务,在探测监控等安全领域中有非常重要的作用;针对传统恒虚警目标检测方法存在的环境适应能力较弱、复杂地形环境下雷达虚警数量急剧上升等问题,提出一种基于卷积神经网络的雷达目标检测方法;以雷达回波信号数据处理后得到的距离-多普勒图像作为模型的训练集和测试集,设计基于FasterR-CNN结构的雷达目标检测模型,训练模型并将测试结果与传统恒虚警目标检测算法结果相比较,所设计的模型提升了雷达目标检测正确率并较大地减少了虚警数量,这表明将卷积神经网络应用于雷达回波信号的处理任务中是可行的。  相似文献   

9.
针对如何在锚节点密度较低的情况下提高无线传感器网络中节点自定位精度的问题,本文提出了一种基于RSSI和TDOA组合测距的加权质心定位算法.该算法分别对传统RSSI和TDOA测距模型增加了校验参数及温度补偿,将未知节点与锚节点间距离估计值的倒数作为权值参数,再利用加权质心算法计算出未知节点的位置坐标.硬件试验表明室内环境中基于改进RSSI测距模型的定位算法相比于传统RSSI质心定位算法的误差改进比率为56.2%,仿真结果显示基于组合测距的定位算法在锚节点密度较低时也能达到较高的定位精度.  相似文献   

10.
传统的僵尸网络检测方法无法及时可靠地发现不断进化的僵尸网络变种,机器学习方法被应用到僵尸网络的流量分析中,具有良好的效果。通过改进数据处理方法,剔除数据流中无效的信息,增加人工提取的特征来表现数据流的总体特征,然后使用卷积神经网络进行特征学习,提高检测的准确率。实验表明,改进后的僵尸网络检测准确率为99.02%,误报率为1.81%。  相似文献   

11.
网络已经深入人们生产生活的各领域。然而,由于存在大量的非法入侵行为,网络所面临的安全问题也越来越严峻。因此,检测入侵以保障网络安全是一个亟待解决的问题。针对此,本文提出一种基于异卷积神经网络的入侵检测方法,采用深度学习的卷积神经网络模型完成对入侵数据的特征提取,然后根据2种不同结构的卷积神经网络训练数据,从而得到最优模型,用以判断网络入侵。最后,使用KDD 99数据进行对比实验,验证本文方法的准确性和精确性。  相似文献   

12.
目标检测作为计算机视觉的重要研究方向,在智慧城市、无人驾驶等领域的作用越来越重要.传统目标检测算法中,根据交并比(Intersection over Union,IOU)的大小判断正负样本,但较低的IOU会引入噪声,降低检测器的精度;较高的IOU会保留少数高质量样本,造成过拟合;并且推荐区域和检测器的IOU阈值相差过大...  相似文献   

13.
为实现对葡萄叶片氮素含量快速、便捷的识别,在卷积神经网络VGG-16网络结构基础上,将数据增广后的图像按不同梯度划分进行模型训练,通过十折交叉验证法探究最佳的训练集与验证集分配比例,并构建4个不同深度的网络模型进行训练对比,采用全局平均池化代替全连接层约简网络参数量。训练结果表明,氮含量梯度设为0. 70%、0. 35%和0. 175%时,室内简单背景识别准确率分别为85. 9%、76. 2%和71. 1%;晴天室外复杂背景下识别准确率分别为44. 6%、35. 0%和30. 4%。研究结果表明利用VGG-16建立的网络学习模型对葡萄叶片氮含量识别提供了一种新的便捷方法,对农业信息化和智能化技术应用具有一定促进作用。  相似文献   

14.
赵宏  曹三  肖昌炎 《测控技术》2020,39(8):102-107
烟标、卡片等片状产品的准确计数对企业成本的控制具有重要价值。然而,薄片产品数量大、种类多,其端面图像易出现薄片条纹对比度低、灰度不均、宽度不一、粘连和断裂等问题。此外,传统视觉检测方法仅凭图像的单一特征无法实现多种叠层薄片的兼容检测。针对这些难题,提出一种基于深度卷积神经网络的叠层薄片条纹检测方法。此方法利用端到端卷积网络分割叠层薄片端面图像的条纹区域,用于薄片计数。实验结果表明,本文方法相比于传统方法具有更好的准确性和鲁棒性。深度卷积神经网络拥有较大的上下文和多尺度信息,从而可解决困扰传统图像处理方法面临的粘连、破损和低对比度等问题,拓宽叠层薄片智能计数的应用领域。  相似文献   

15.
近年来,卷积神经网络(CNN)等深度学习方法的发展为发动机故障诊断和预测带来了新的思路。CNN具有局部连接、权值共享、池化操作以及多层结构等特点,能够有效提取局部特征,降低网络的训练难度,使CNN具有很强的学习能力和特征表达能力。开展了深度卷积神经网络故障预测方法研究,实现了面向发动机气路故障预测算法架构。利用基于发动机试验仿真数据对该方法进行了验证,并与其他几种常见的基于数据驱动的预测方法进行了比较,验证结果表明本文提出的基于卷积神经网络的预测方法具有较好的可行性和效果,可作为开展发动机PHM技术研究的参考。  相似文献   

16.
随着深度学习的广泛应用和智能移动设备的普及,将深度学习的应用迁移到移动设备上已经成为一种新的趋势.本文设计了一种基于安卓平台和轻量级卷积神经网络的鸟类识别系统,该系统不依赖任何外部的计算资源和存储资源.本文提出以轻量级卷积神经网络作为基础模型的三种模型融合方法,分别是加权平均融合、双线型融合和多图片单模型融合.本文详细介绍了三种融合方式的结构和优缺点,并且给出了模型选择和超参数选择的一些方法.实验结果表明模型融合的方式相比单模型而言,识别精度有显著提高,可以更好的应用到安卓移动设备上.  相似文献   

17.
传统的主题爬虫在计算主题相似度时,通常采用基于词频、向量空间模型以及语义相似度的方法,给相似度计算准确率的提升带来一定瓶颈。因此,提出融合LDA的卷积神经网络主题爬虫,将主题判断模块视为文本分类问题,利用深度神经网络提升主题爬虫的性能。在卷积层之后拼接LDA提取的主题特征,弥补传统卷积神经网络的主题信息缺失。实验结果表明,该方法可以有效提升主题判断模块的平均准确率,在真实爬取环境中相比其他方法更具优势。  相似文献   

18.
近年来,全卷积神经网络发展迅猛,在多个视觉研究领域表现出了非常亮眼的成绩。重点收集了近几年的高质量文献,对其中提出的全卷积方法进行分析总结,力求让读者通过对研读,对全卷积神经网络的关键技术、研究现状和最新进展有一个比较全面的了解。将收集到的文献,按照研究领域的不同进行分类汇总,重点提取几个研究非常活跃的领域,详细介绍一些非常具有代表性的算法,并重点介绍了各种方法的精髓所在,同时还对近一年来的最新研究进展进行了概述。通过对大量文献的梳理研究,总结出全卷积神经网络在近几年取得的成就,分析各种方法的优缺点,根据全卷积神经网络目前还存在的一些问题,归纳出未来可能的发展方向。  相似文献   

19.
RGB-D图像显著性检测旨在提取三维图像中的显著目标.为解决当前显著性检测算法难以检测出光线干扰场景内的目标和低对比度的目标等问题,提出了基于跳层卷积神经网络的RGB-D图像显著性检测方法.利用VGG网络分离出RGB图像和深度图像的浅层与深层特征,而后进行特征提取;以跳层结构为基础连接提取到的特征,实现融合深度、颜色、...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号