共查询到17条相似文献,搜索用时 125 毫秒
1.
针对扩展蚁群算法收敛慢,且容易陷入局部最优的缺点对扩展蚁群算法提出改进策略.引入量子比特表示蚂蚁位置以增加解的多样性;采用量子非门实现蚂蚁位置的变异以避免蚂蚁陷入局部最优;引入量子旋转门和高斯核概率密度函数结合更新蚂蚁携带的量子比特,利于在连续空间寻优;根据解的重要性改进解存储器中每个解的权值以提高解的方向性,快速获得最优解.通过对多个二维和多维连续函数的对比仿真实验验证了算法的有效性. 相似文献
2.
针对蚁群算法在求解多任务联盟问题(multi-task coalition problem,MTCP)时存在的求解精度不高、迭代次数多的不足,利用量子计算的并行性,提出了一种求解多任务联盟问题的量子蚁群算法.首先,利用量子叠加态给出了基于Agent的量子编码,使1个Agent能占据空间中的2个位置;其次,为使旋转角获得合适的大小和方向,提出了一种基于信息素的自适应修正旋转角调整策略;最后,通过对量子编码进行观测,给出了基于量子态的蚂蚁寻优策略.实验结果表明,与已有的算法相比,该算法不仅能获得更高质量的解,而且收敛速度也有显著的提高. 相似文献
3.
为了寻找一种合理有效的多机器人任务分配算法,基于多机器人协作救火任务环境,以博弈论纳什均衡为基础,研究多机器人的任务分配问题。根据任务模型特点和纳什均衡的主要特征提出了一种基于博弈论的任务分配算法。博弈的效用函数同时考虑了距离、火势和燃烧时间等因素,机器人根据此效用函数选择行为策略,促使机器人尽快扑灭惩罚值较大的火灾而获得较大的奖励值。利用任务总收益函数值的大小评价算法的优劣性。收益函数与火势、燃烧时间和机器人扑灭火灾数有关,这切合实际救火模型。实验结果证明了该任务分配算法的有效性。 相似文献
4.
基于MATLAB的改进型基本蚁群算法 总被引:4,自引:0,他引:4
蚁群算法是一种新型的模拟进化算法。是继GA、SA、TS等算法之后求解组合优化问题的一种新思路。人工蚁群算法通过模拟蚁群搜索食物的行为,采用正反馈结构、分布式计算与某种启发式算子相结合的方法,能够很快地发现较好解。本给出一种基于MATLAB的改进型基本蚁群算法,有效地降低了算法的复杂度,缩短了搜索时间,具有较强发现最好解的能力。 相似文献
5.
针对网络资源管理中的负载均衡与优化问题,提出一种改进的多蚁群算法,通过代表网络流量的多蚁群间信息素的相互作用和动态更新来实现网络流量分担到多条可用路径;通过确定性选择和随机性选择相结合的方法自适应地选择最优路径,实现流量负载均衡;通过设置信息素的最大和最小值,避免早熟收敛行为,增加了全局最优解的搜索能力;通过对代价函数的改进及以上改进方法的综合运用提高了算法的自适应性。仿真实验结果表明,改进的多蚁群算法比原多蚁群算法在缩短自适应时间、减少丢包率、提高负载均衡效率方面具有更优的性能。 相似文献
6.
求解TSP问题的改进蚁群算法 总被引:10,自引:1,他引:10
分析了标准蚁群算法易于出现早熟停滞现象的主要原因,在原有算法基础上引入局部信息激素、最优最差路径信息激素更新策略及变参数策略,扩大了解的搜索空间,有效抑制了收敛过程中的早熟停滞现象,大大提高了算法收敛速度;同时引入局部最优搜索策略,增大了解突变的机率,求解质量得到了极大的改善.对于典型旅行商问题库中旅行商问题的实验及与标准蚁群算法的比较实验验证了该方法的有效性. 相似文献
7.
成本优化问题的蚁群算法 总被引:5,自引:0,他引:5
为了确定施工项目工期 成本均衡曲线,从而为施工项目计划和控制决策提供有效依据,提出了施工项目工期成本优化问题的蚁群算法.该方法利用施工项目工期成本优化问题的组合优化问题本质,将其转化为旅行商问题,利用自适应权重方法将工期、成本两个目标综合成单目标,采用蚁群算法进行Pareto解的搜索.通过两个实例的计算结果表明,该方法可以有效地确定具有实用价值的Pareto解,且具有较高的全局寻优能力和搜索效率,对于具有大规模网络计划的工期成本优化问题的求解是十分适用的. 相似文献
8.
基于信息熵的蚁群聚类算法是一种自组织聚类算法,具备健壮性、可视化等特点,并能生成一些新的有意义的聚类模式.基于信息素的K-means算法的K值和初始聚类中心是事先给定的,而往往两者的选择可以直接影响聚类的效果和速度(K-means算法的缺点之一).因此,在基于信息熵的蚁群聚类算法的基础上,结合基于信息素的K-means算法,提出了一种聚类组合算法. 相似文献
9.
赵越 《吉林建筑工程学院学报》2009,26(5):71-74
通过分析蚂蚁在觅食过程中对最短路径的搜索策略,给出蚁群算法在求解旅行商问题(TSP)中的应用,并使用3—opt方法对所求问题的解进行局部优化,实验结果证明了该解决方案的有效性. 相似文献
10.
蚁群算法作为模仿蚂蚁寻找食物的进化算法已经成功的应用于许多组合优化领域.针对其在给水管网管径组合优化设计过程中的计算时间长,易陷入局部极小点等问题,提出了单只蚂蚁更新外激素值,并使外激素值限定在一定范围内的基于二进制编码的极大极小蚁群改进算法,并编制了相应的程序代码.将该方法运用到某小区管网的管径组合优化,结果表明,改进的蚁群算法与基本的蚁群算法相比,更容易实现全局最优解,且计算时间较短. 相似文献
11.
基于云模型理论的蚁群算法改进研究 总被引:21,自引:0,他引:21
近几年优化领域中新出现的蚁群算法采用分布式并行计算机制,易于与其它方法结合,具有较强的鲁棒性。但易限于局部最优解是其最突出的缺点.云模型是一种新的实现定性概念和定量数值之间转换的有力工具,本文在介绍云模型理论的基础上,提出了一种利用云模型来有效限制蚁群算法陷入局部最优解的方法,最后将基于云模型理论的改进蚁群算法与未改进的蚁群算法分别应用于著名的CHC144 TSP进行实验.改进后的蚁群算法采用升半正态云规则进行控制,并选取了500个云滴,仿真计算结果证明了该方法的有效性和可行性. 相似文献
12.
一种求解连续优化的蚁群混合算法 总被引:1,自引:0,他引:1
针对蚁群优化算法和Alopex算法的特性,将Alopex算法嵌入到改进的蚁群优化算法中.提出一种求解连续空间优化问题的混合算法(ACOAL),ACOAL算法定义了新的蚁群信息素更新规则、蚁群在解空间的寻优方式和蚁群行进策略;同时,结合Alopex算法以加强搜索能力,该算法充分发挥了Alopex算法的快速搜索能力和蚁群算法寻优性质优良的特性,提高了算法的收敛速度,避免了优化算法陷入局部最优。 相似文献
13.
蚁群算法是一种新型的随机优化算法,应用蚁群算法优化机制,提出了一种基于蚁群算法的语音信号动态时间规划方法———蚁群动态时间规划算法,搜索语音信号之间匹配的一条全局最优路径,进而以此衡量语音信号之间的相似度.算法给出了蚁群状态转移概率及信息素更新方程,既利用了语音信号的全局特征又考虑了其局部信息.理论分析与仿真实验结果均证明了此方法的可行性,与传统的DTW算法相比较,其匹配结果更能体现匹配语音信号之间的相似度. 相似文献
14.
基于蚁群算法的连续时间生产计划优化 总被引:1,自引:0,他引:1
针对连续时间生产计划问题,在生产速率、需求率和库存水平等都确定的前提下建立相应的数学模型,并将蚁群算法引入到连续时间生产计划的优化中,利用蚁群算法的自适应、全局优化、并行分布式处理等特性在整个生产计划的可行解中寻找最优解.通过对连续时间生产计划优化问题的计算表明:该方法比遗传算法具有更好的收敛性和更快的计算速度. 相似文献
15.
针对基本蚁群算法的过早收敛问题,引入信息熵,通过优化参数 ,对基本蚁群算法进行改进,进而寻找结构的最短失效路径。从可靠指标的几何意义出发, 利用罚函数法, 将结构可靠指标的求解问题转化成相应的无约束优化问题,采用粒子群算法对结构可靠指标进行求解计算。以十杆桁架为例,采用响应面法、遗传算法与本算法对结构可靠指标进行对比计算,结果表明改进蚁群与粒子群算法的收敛速度快,计算精度高。 相似文献
16.
在HITS算法的基础上应用蚁群算法的主要思想,对网页按关键字搜索后被点击的次数进行统计,结合相关内容提出了一种新的搜索算法—基于蚁群算法的改进HITS算法.实验表明,该算法在使得返回结果中相关度较高的网页通过人们的自主选择获得了不同程度的加权,使得其在查准率及解决HITS算法的主题漂移方面都优于传统HITS算法. 相似文献
17.
在HITS算法的基础上应用蚁群算法的主要思想,对网页按关键字搜索后被点击的次数进行统计,结合相关内容提出了一种新的搜索算法—基于蚁群算法的改进HITS算法.实验表明,该算法在使得返回结果中相关度较高的网页通过人们的自主选择获得了不同程度的加权,使得其在查准率及解决HITS算法的主题漂移方面都优于传统HITS算法. 相似文献