首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The general amino acid permease, Gap1, of Saccharomyces cerevisiae is very active in cells grown on proline as the sole nitrogen source. Adding NH4+ to the medium triggers inactivation and degradation of the permease via a regulatory process involving Npi1p/Rsp5p, a ubiquitin-protein ligase. In this study, we describe several mutations affecting the C-terminal region of Gap1p that render the permease resistant to NH4(+)-induced inactivation. An in vivo isolated mutation (gap1pgr) causes a single Glu-->Lys substitution in an amino acid context similar to the DXKSS sequence involved in ubiquitination and endocytosis of the yeast alpha-factor receptor, Ste2p. Another replacement, substitution of two alanines for a di-leucine motif, likewise protects the Gap1 permease against NH4(+)-induced inactivation. In mammalian cells, such a motif is involved in the internalization of several cell-surface proteins. These data provide the first indication that a di-leucine motif influences the function of a plasma membrane protein in yeast. Mutagenesis of a putative phosphorylation site upstream from the di-leucine motif altered neither the activity nor the regulation of the permease. In contrast, deletion of the last eleven amino acids of Gap1p, a region conserved in other amino acid permeases, conferred resistance to NH4+ inactivation. Although the C-terminal region of Gap1p plays an important role in nitrogen control of activity, it was not sufficient to confer this regulation to two NH4(+)-insensitive permeases, namely the arginine (Can1p) and uracil (Fur4p) permeases.  相似文献   

2.
3.
The conformationally sensitive epitope for monoclonal antibody (mAb) 4B1, which uncouples lactose from H+ translocation in the lactose permease of Escherichia coli, is localized in the periplasmic loop between helices VII and VIII (loop VII/VIII) on one face of a short helical segment (Sun J, et al., 1996, Biochemistry 35;990-998). Comparison of sequences in the region corresponding to loop VII/VIII in members of Cluster 5 of the Major Facilitator Superfamily (MFS), which includes five homologous oligosaccharide/H+ symporters, reveals interesting variations. 4B1 binds to the Citrobacter freundii lactose permease or E. coli raffinose permease with resultant inhibition of transport activity. Because E. coli raffinose permease contains a Pro residue at position 254 rather than Gly, it is unlikely that the mAb recognizes the peptide backbone at this position. Consistently, E. coli lactose permease with Pro in place of Gly254 also binds 4B1. In contrast, 4B1 binding is not observed with either Klebsiella pneumoniae lactose permease or E. coli sucrose permease. When the epitope is transferred from E. coli lactose permease (residues 245-259) to the sucrose permease, the modified protein binds 4B1, but the mAb has no significant effect on sucrose transport. The studies provide further evidence that the 4B1 epitope is restricted to loop VII/VIII, and that 4B1 binding induces a highly specific conformational change that uncouples substrate and H+ translocation.  相似文献   

4.
RSP5, an essential gene of Saccharomyces cerevisiae, encodes a hect domain E3 ubiquitin-protein ligase. Hect E3 proteins have been proposed to consist of two broad functional domains: a conserved catalytic carboxyl-terminal domain of approximately 350 amino acids (the hect domain) and a large, nonconserved amino-terminal domain containing determinants of substrate specificity. We report here the mapping of the minimal region of Rsp5 necessary for its essential in vivo function, the minimal region necessary to stably interact with a substrate of Rsp5 (Rpb1, the large subunit of RNA polymerase II), and the finding that the hect domain, by itself, is sufficient for formation of the ubiquitin-thioester intermediate. Mutations within the hect domain that affect either the ability to form a ubiquitin-thioester or to catalyze substrate ubiquitination abrogate in vivo function, strongly suggesting that the ubiquitin-protein ligase activity of Rsp5 is intrinsically linked to its essential function. The amino-terminal region of Rsp5 contains three WW domains and a C2 calcium-binding domain. Two of the three WW domains are required for the essential in vivo function, while the C2 domain is not, and requirements for Rpb1 binding and ubiquitination lie within the region required for in vivo function. Together, these results support the two-domain model for hect E3 function and indicate that the WW domains play a role in the recognition of at least some of the substrates of Rsp5, including those related to its essential function. In addition, we show that haploid yeast strains bearing complete disruptions of either of two other hect E3 genes of yeast, designated HUL4 (YJR036C) and HUL5 (YGL141W), are viable.  相似文献   

5.
When Saccharomyces cerevisiae cells growing on galactose are transferred onto glucose medium containing cycloheximide, an inhibitor of protein synthesis, a rapid reduction of Gal2p-mediated galactose uptake is observed. We show that glucose-induced inactivation of Gal2p is due to its degradation. Stabilization of Gal2p in pra1 mutant cells devoid of vacuolar proteinase activity is observed. Subcellular fractionation and indirect immunofluorescence showed that the Gal2 transporter accumulates in the vacuole of the mutant cells, directly demonstrating that its degradation requires vacuolar proteolysis. In contrast, Gal2p degradation is proteasome independent since its half-life is unaffected in pre1-1 pre2-2, cim3-1, and cim5-1 mutants defective in several subunits of the protease complex. In addition, vacuolar delivery of Gal2p was shown to be blocked in conditional end3 and end4 mutants at the nonpermissive temperature, indicating that delivery of Gal2p to the vacuole occurs via the endocytic pathway. Taken together, the results presented here demonstrate that glucose-induced proteolysis of Gal2p is dependent on endocytosis and vacuolar proteolysis and is independent of the functional proteasome. Moreover, we show that Gal2p is ubiquitinated under conditions of glucose-induced inactivation.  相似文献   

6.
A strain of Schizosaccharomyces pombe carrying a disrupted Na+/H+ antiporter gene (sod2::sup3-5), in addition to the common auxotrophic mutations, ade6-216, ura4-D18 and leu1-32, is highly sensitive to media adjusted to pH 6.9. Reversion analysis of this strain yielded a group of revertants capable of growth at pH 6.9. Two of the revertants elongated and failed to form colonies at pH 3.5. Genetic characterization of one of the pH-sensitive elongated strains, J227, showed the presence of two independently segregating mutations. One, pub1 (protein ubiquitin ligase 1), has recently been reported as an E3 protein ubiquitin ligase involved in cdc25 turnover. The second has been named elp3-1 (elongated at low pH). Genetic dissection of the original strain revealed that poor growth at high pH was due to the presence of the auxotrophic markers, suggesting a possible inhibitory effect of high pH on the function of permeases responsible for uptake of the necessary nutrients. Suppression of the high pH sensitivity required the presence of both the pub1-1 and elp3-1 mutations. While the pub1-1 mutation reduced the capacity of cells to tolerate relatively moderate concentrations of LiCl (3 mM) in liquid culture, it was capable of partially suppressing the extreme Li+ sensitivity caused by the sod2 disruption. Under these conditions, the growth of pub1-1 sod2::ura4 double mutant cells was improved over that of either pub1-1 or sod2::ura4 cells. The elp3-1 mutation had no effect on the Li+ tolerance in either wild-type or sod2::ura4 backgrounds. pub1-1 cells are elongated and incapable of colony formation at pH 3.5. In contrast, elp3-1 cells are elongated at pH 3.5 and pH 5.5 (the normal pH of minimal medium) but can form colonies under both conditions. J227 cells are significantly longer than either single mutant at pH 3.5 and do not form colonies but are visually similar to elp3-1 cells at pH 5.5. Complementation cloning in the J227 background yielded a genomic clone of pub1, allowing us to define the intron-exon structure of the gene. Sequences with high homology to the predicted amino acid sequence of pub1 have been identified in Saccharomyces cerevisiae (RSP5/NPI1), human (hRPF1), mouse (mNedd4), and rat (rNedd4). Based on the nature of our mutant selection, the pH-sensitive phenotype of the strains selected, and the known involvement of RSP5/ NPI1 in membrane permease turnover in S. cerevisiae, we hypothesize a role for pub1, either directly or indirectly, in regulating membrane transport processes. This is further supported by the broad range of effects that the pub1-1 mutation exerts on overall performance of cells at high and low external pH, and in the presence of toxic levels of Li+.  相似文献   

7.
8.
9.
The Saccharomyces cerevisiae targets of rapamycin, TOR1 and TOR2, signal activation of cell growth in response to nutrient availability. Loss of TOR or rapamycin treatment causes yeast cells to arrest growth in early G1 and to express several other physiological properties of starved (G0) cells. As part of this starvation response, high affinity amino acid permeases such as the tryptophan permease TAT2 are targeted to the vacuole and degraded. Here we show that the TOR signalling pathway phosphorylates the Ser/Thr kinase NPR1 and thereby inhibits the starvation-induced turnover of TAT2. Overexpression of NPR1 inhibits growth and induces the degradation of TAT2, whereas loss of NPR1 confers resistance to rapamycin and to FK506, an inhibitor of amino acid import. NPR1 is controlled by TOR and the type 2A phosphatase-associated protein TAP42. First, overexpression of NPR1 is toxic only when TOR function is reduced. Secondly, NPR1 is rapidly dephosphorylated in the absence of TOR. Thirdly, NPR1 dephosphorylation does not occur in a rapamycin-resistant tap42 mutant. Thus, the TOR nutrient signalling pathway also controls growth by inhibiting a stationary phase (G0) programme. The control of NPR1 by TOR is analogous to the control of p70 s6 kinase and 4E-BP1 by mTOR in mammalian cells.  相似文献   

10.
CD4 is an integral membrane glycoprotein which functions as the human immunodeficiency virus receptor for infection of human host cells. We have recently demonstrated that Vpu, a human immunodeficiency virus type 1-encoded integral membrane phosphoprotein, induces rapid degradation of CD4 in the endoplasmic reticulum. Using an in vitro model system, we demonstrated that Vpu targets specific sequences in the cytoplasmic domain of CD4 to promote its degradation. In this report, we have further delineated regions within CD4 which are required for susceptibility to Vpu. Transfer of the CD4 cytoplasmic region into a heterologous protein, CD8, rendered the chimeric protein sensitive to Vpu-dependent degradation. In contrast, substitution of the CD8 transmembrane domain with the analogous region from CD4 did not confer sensitivity to Vpu. Finally, mutant forms of the CD4 protein containing the extracellular region alone or the extracellular and transmembrane regions linked to a heterologous cytoplasmic domain were not targeted by Vpu. Thus, sequences present in the cytoplasmic domain of CD4 are necessary and sufficient to confer sensitivity to Vpu.  相似文献   

11.
Uptake of uracil by the yeast Saccharomyces cerevisiae is mediated by a specific permease encoded by the FUR4 gene. Uracil permease located at the cell surface is subject to two covalent modifications: phosphorylation and ubiquitination. The ubiquitination step is necessary prior to permease endocytosis and subsequent vacuolar degradation. Here, we demonstrate that a PEST-like sequence located within the cytoplasmic N terminus of the protein is essential for uracil permease turnover. Internalization of the transporter was reduced when some of the serines within the region were converted to alanines and severely impaired when all five serines within the region were mutated or when this region was absent. The phosphorylation and degree of ubiquitination of variant permeases were inversely correlated with the number of serines replaced by alanines. A serine-free version of this sequence was very poorly phosphorylated, and elimination of this sequence prevented ubiquitination. Thus, it appears that the serine residues in the PEST-like sequence are required for phosphorylation and ubiquitination of uracil permease. A PEST-like sequence in which the serines were replaced by glutamic acids allowed efficient permease turnover, suggesting that the PEST serines are phosphoacceptors.  相似文献   

12.
Overexpression of mutant p53 has been reported to promote tumorigenicity in several cancers. However, despite its potential importance, the signals regulating mutant p53 protein expression are not known. Here we show that a form of p53 that is incapable of binding DNA is overexpressed in the acute promyelocytic leukemia NB4 cell line. Our results demonstrate that treatment of NB4 cells with bryostatin-1, which induces differentiation in this cell line, leads to hyperphosphorylation of this DNA binding-impaired form of p53 via mitogen-activated protein kinase. After this phosphorylation, the p53 protein is degraded by the ubiquitin/proteasome pathway. Furthermore, we show that inhibition of p53 hyperphosphorylation blocks p53 protein degradation and cell differentiation. In addition, inhibition of the ubiquitin/proteasome pathway also blocks p53 protein degradation and cell differentiation. These findings suggest a role for mitogen-activated protein kinase in the degradation of the DNA binding-impaired form of p53 protein and in the bryostatin-induced differentiation observed in this cell line. The implications of these results with respect to the functional significance of p53 phosphorylation and degradation in cell differentiation are discussed.  相似文献   

13.
Dopamine inhibits Na+,K+-ATPase activity in renal tubule cells. This inhibition is associated with phosphorylation and internalization of the alpha subunit, both events being protein kinase C-dependent. Studies of purified preparations, fusion proteins with site-directed mutagenesis, and heterologous expression systems have identified two major protein kinase C phosphorylation residues (Ser-11 and Ser-18) in the rat alpha1 subunit isoform. To identify the phosphorylation site(s) that mediates endocytosis of the subunit in response to dopamine, we have performed site-directed mutagenesis of these residues in the rat alpha1 subunit and expressed the mutated forms in a renal epithelial cell line. Dopamine inhibited Na+,K+-ATPase activity and increased alpha subunit phosphorylation and clathrin-dependent endocytosis into endosomes in cells expressing the wild type alpha1 subunit or the S11A alpha1 mutant, and both effects were blocked by protein kinase C inhibition. In contrast, dopamine did not elicit any of these effects in cells expressing the S18A alpha1 mutant. While Ser-18 phosphorylation is necessary for endocytosis, it does not affect per se the enzymatic activity: preventing endocytosis with wortmannin or LY294009 blocked the inhibitory effect of dopamine on Na+,K+-ATPase activity, although it did not alter the increased alpha subunit phosphorylation induced by this agonist. We conclude that dopamine-induced inhibition of Na+, K+-ATPase activity in rat renal tubule cells requires endocytosis of the alpha subunit into defined intracellular compartments and that phosphorylation of Ser-18 is essential for this process.  相似文献   

14.
Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin-Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0 degreesC, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5-10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.  相似文献   

15.
Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth.  相似文献   

16.
Activation of certain phosphoinositidase C-linked cell surface receptors is known to cause an acceleration of the proteolysis of inositol 1,4,5-trisphosphate (InsP3) receptors and, thus, lead to InsP3 receptor down-regulation. To gain insight into this process, we examined whether or not InsP3 receptor degradation is a direct consequence of InsP3 binding by analyzing the down-regulation of exogenous wild-type and binding-defective mutant InsP3 receptors expressed in SH-SY5Y human neuroblastoma cells. Stimulation of these cells with carbachol showed that wild-type exogenous receptors could be down-regulated but that the binding-defective mutant exogenous receptors were not. Thus, InsP3 binding appears to mediate down-regulation. To validate this conclusion, a comprehensive analysis of the effects of the exogenous receptors was undertaken. This showed that exogenous receptors (i) are localized appropriately within the cell, (ii) enhance InsP3-induced Ca2+ release in permeabilized cells, presumably by increasing the number of InsP3-sensitive Ca2+ channels, (iii) have minimal effects on Ca2+ mobilization and InsP3 formation in intact cells, (iv) form heteromers with endogenous receptors, and (v) do not alter the down-regulation of endogenous receptors. In total, these data show that the introduction of exogenous receptors into SH-SY5Y cells does not compromise intracellular signaling or the down-regulatory process. We can thus conclude that InsP3 binding directly activates InsP3 receptor degradation. Because InsP3 binding induces a conformational change in the InsP3 receptor, these data suggest that this change provides the signal for accelerated proteolysis.  相似文献   

17.
The heterochromatic Responder (Rsp) locus of Drosophila melanogaster is the target of the two distorter loci Sd and E(SD). Rsp is located in a specific heterochromatic region of the second chromosome and is made up of AT-rich satellite sequences whose abundance is related to its sensitivity to the distorter chromosomes. Here we report that a cluster of Rsp sequences is also located in the third chromosome. The third-chromosome cluster has the same flanking sequences as the clone originally used to identify the Rsp elements, and one of the flanking sequences is a rearranged 412 retrotransposon. The presence of a second, unlinked Rsp-sequence cluster makes re-interpretation necessary for some earlier experiments in which segregation of the third chromosome had not been followed and raises interesting possibilities for the origin of the Rsp locus.  相似文献   

18.
Previous studies have demonstrated that non-visual arrestins function as adaptors in clathrin-mediated endocytosis to promote agonist-induced internalization of the beta2-adrenergic receptor (beta2AR). Here, we characterized the effects of arrestins and other modulators of clathrin-mediated endocytosis on down-regulation of the beta2AR. In COS-1 and HeLa cells, non-visual arrestins promote agonist-induced internalization and down-regulation of the beta2AR, whereas dynamin-K44A, a dominant-negative mutant of dynamin that inhibits clathrin-mediated endocytosis, attenuates beta2AR internalization and down-regulation. In HEK293 cells, dynamin-K44A profoundly inhibits agonist-induced internalization and down-regulation of the beta2AR, suggesting that receptor internalization is critical for down-regulation in these cells. Moreover, a dominant-negative mutant of beta-arrestin, beta-arrestin-(319-418), also inhibits both agonist-induced receptor internalization and down-regulation. Immunofluorescence microscopy analysis reveals that the beta2AR is trafficked to lysosomes in HEK293 cells, where presumably degradation of the receptor occurs. These studies demonstrate that down-regulation of the beta2AR is in part due to trafficking of the beta2AR via the clathrin-coated pit endosomal pathway to lysosomes.  相似文献   

19.
The common cytokine receptor gammac, shared by interleukin 2, 4, 7, 9, and 15 receptors, has a major role in lymphocyte proliferation and differentiation, leading, when mutated, to a genetic disease, X-linked severe combined immunodeficiency. In this study, we report that gammac is internalized and degraded in lymphoid cells. To identify gammac regions involved in sorting along the endocytic pathway, we have studied a chimeric protein composed of the extracellular part of interleukin 2-receptor alpha and transmembrane and intracellular part of gammac, alpha gamma gammawt. When transfected in Jurkat T cells, alpha gamma gammawt is as efficiently internalized and degraded as gammac, demonstrating that the transmembrane and cytosolic tail of gammac carry sequences involved in this process. To identify these motifs, we have analyzed the trafficking of chimeric proteins with serial truncations in their cytosolic tail. Internalization studies showed that the cytosolic tail of gammac contains three regions located between cytosolic amino acids 1-35, 35-40, and 40-65 involved in gammac endocytosis. Successive deletions of these motifs result in reduced endocytosis. One region containing the 5 cytosolic amino acids 36-40 is essential to direct gammac to the degradation pathway. These sorting sequences, by participating in the fine tuning of cell surface gammac expression, might somewhat regulate the cell responsiveness to interleukins whose receptors share this component.  相似文献   

20.
In the present work, we studied the phagocytic and endocytic properties of murine Fc gamma RII in mast cells. Mouse mast cells express high-affinity receptors for monomeric IgE and three low-affinity receptors for complexed IgG: Fc gamma RIIb1, Fc gamma RIIb2, and Fc gamma RIII. In previous studies we showed that, when aggregated by multivalent ligands, murine Fc gamma RIII, but not Fc gamma RII, triggers the release of inflammatory mediators and cytokines by mast cells. Upon Fc gamma R aggregation, mast cells not only release intracellular materials, they also internalize particulate and soluble immune complexes. We compared the ability of the two Fc gamma RII isoforms to trigger phagocytosis and endocytosis in RBL-2H3 cells stably transfected with cDNAs encoding wild-type, deleted, and tyrosine mutant Fc gamma RIIb1 or Fc gamma RIIb2. We found that Fc gamma RIIb2, but not Fc gamma RIIb1, triggered both phagocytosis and endocytosis. We identified distinct intracytoplasmic sequences necessary for Fc gamma RIIb2-mediated endocytosis and phagocytosis respectively, and we observed that two tyrosine residues, located in each of these sequences, are critical for endocytosis and/or phagocytosis. Our data indicate that the two internalization pathways diverge as early as signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号