共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that high stress and particularly an enhancement of plasma catecholamines and myocardial infarction have a close relation. In addition, adrenaline is presented as a prothrombogenic agent in vivo. The role of the other agents such as serotonin or acetylcholine, in the development of arterial thrombosis is somewhat uncertain, although, the role of each of them is often considered at the level of vascular regulation only. Therefore, the present study was designed to investigate the effects of three neurotransmitters on experimental arterial thrombosis model induced by generation of free radicals. The results demonstrate that intravenously injection of adrenaline or serotonin (1 ng/kg) stimulated arterial thrombosis formation, whereas injection of high dose of acetylcholine (5 mg/kg) slackened the thrombosis formation. 相似文献
2.
The general amino acid permease, Gap1, of Saccharomyces cerevisiae is very active in cells grown on proline as the sole nitrogen source. Adding NH4+ to the medium triggers inactivation and degradation of the permease via a regulatory process involving Npi1p/Rsp5p, a ubiquitin-protein ligase. In this study, we describe several mutations affecting the C-terminal region of Gap1p that render the permease resistant to NH4(+)-induced inactivation. An in vivo isolated mutation (gap1pgr) causes a single Glu-->Lys substitution in an amino acid context similar to the DXKSS sequence involved in ubiquitination and endocytosis of the yeast alpha-factor receptor, Ste2p. Another replacement, substitution of two alanines for a di-leucine motif, likewise protects the Gap1 permease against NH4(+)-induced inactivation. In mammalian cells, such a motif is involved in the internalization of several cell-surface proteins. These data provide the first indication that a di-leucine motif influences the function of a plasma membrane protein in yeast. Mutagenesis of a putative phosphorylation site upstream from the di-leucine motif altered neither the activity nor the regulation of the permease. In contrast, deletion of the last eleven amino acids of Gap1p, a region conserved in other amino acid permeases, conferred resistance to NH4+ inactivation. Although the C-terminal region of Gap1p plays an important role in nitrogen control of activity, it was not sufficient to confer this regulation to two NH4(+)-insensitive permeases, namely the arginine (Can1p) and uracil (Fur4p) permeases. 相似文献
3.
4.
Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth. 相似文献
5.
6.
Uptake of uracil by the yeast Saccharomyces cerevisiae is mediated by a specific permease encoded by the FUR4 gene. Uracil permease located at the cell surface is subject to two covalent modifications: phosphorylation and ubiquitination. The ubiquitination step is necessary prior to permease endocytosis and subsequent vacuolar degradation. Here, we demonstrate that a PEST-like sequence located within the cytoplasmic N terminus of the protein is essential for uracil permease turnover. Internalization of the transporter was reduced when some of the serines within the region were converted to alanines and severely impaired when all five serines within the region were mutated or when this region was absent. The phosphorylation and degree of ubiquitination of variant permeases were inversely correlated with the number of serines replaced by alanines. A serine-free version of this sequence was very poorly phosphorylated, and elimination of this sequence prevented ubiquitination. Thus, it appears that the serine residues in the PEST-like sequence are required for phosphorylation and ubiquitination of uracil permease. A PEST-like sequence in which the serines were replaced by glutamic acids allowed efficient permease turnover, suggesting that the PEST serines are phosphoacceptors. 相似文献
7.
When Saccharomyces cerevisiae cells growing on galactose are transferred onto glucose medium containing cycloheximide, an inhibitor of protein synthesis, a rapid reduction of Gal2p-mediated galactose uptake is observed. We show that glucose-induced inactivation of Gal2p is due to its degradation. Stabilization of Gal2p in pra1 mutant cells devoid of vacuolar proteinase activity is observed. Subcellular fractionation and indirect immunofluorescence showed that the Gal2 transporter accumulates in the vacuole of the mutant cells, directly demonstrating that its degradation requires vacuolar proteolysis. In contrast, Gal2p degradation is proteasome independent since its half-life is unaffected in pre1-1 pre2-2, cim3-1, and cim5-1 mutants defective in several subunits of the protease complex. In addition, vacuolar delivery of Gal2p was shown to be blocked in conditional end3 and end4 mutants at the nonpermissive temperature, indicating that delivery of Gal2p to the vacuole occurs via the endocytic pathway. Taken together, the results presented here demonstrate that glucose-induced proteolysis of Gal2p is dependent on endocytosis and vacuolar proteolysis and is independent of the functional proteasome. Moreover, we show that Gal2p is ubiquitinated under conditions of glucose-induced inactivation. 相似文献
8.
PD Bandara JA Flattery-O''Brien CM Grant IW Dawes 《Canadian Metallurgical Quarterly》1998,34(4):259-268
Despite lack of empirical support, facilitated communication was rapidly adopted and used with individuals who have severe communication disorders. An overview of the psychological literature was provided here to support theoretical explanations for this rapid adoption. The literature suggests that cognitive biases, ambiguous stimuli, and biases in data may be associated with a tendency to adopt interventions such as facilitated communication. Psychosocial influences associated with autism, the helping relationship, and the professional career cycle may enhance a readiness to adopt alternative treatments. Social influences may create an environment in which fads arise. Suggestions were provided for students and professionals in the broad fields of rehabilitation and education on how to improve their participation in developing and monitoring innovative treatment methods. 相似文献
9.
10.
Transformation of the respiratory-defective mutant (E264/U2) of Saccharomyces cerevisiae with a yeast genomic library yielded two different plasmids capable of restoring the ability of the mutant to grow on non-fermentable substrates. One of the plasmids (pG52/T3) contained SDH1 coding for the flavoprotein subunit of mitochondrial succinate dehydrogenase. The absence of detectable succinate dehydrogenase activity in mitochondria of E264/U2 and the lack of complementation of the mutant by an sdh11null strain indicated a mutation in SDH1. The second plasmid (pG52/T8) had an insert with reading frame (YJL045w) of yeast chromosome X coding for a homologue of SDH1. Subclones containing the SDH1 homologue (SDH1b), restored respiration in E264/U2 indicating that the protein encoded by this gene is functional. The expression of the two genes was compared by assaying the beta-galactosidase activities of yeast transformed with plasmids containing fusions of lacZ to the upstream regions of SDH1 and SDH1b. The 100-500 times lower activity measured in transformants harbouring the SDH1b-lacZ fusion indicates that the isoenzyme encoded by SDH1b is unlikely to play an important role in mitochondrial respiration. This is also supported by the absence of any obvious phenotype in cells with a disrupted copy of SDH1b. 相似文献
11.
12.
SM Cerritelli DY Shin HC Chen M Gonzales RJ Crouch 《Canadian Metallurgical Quarterly》1993,75(1-2):107-111
Expression of S cerevisiae RNase H1 in E coli leads to the formation of a proteolytic product with a molecular mass of 30 kDa that is derived from the 39-kDa full length protein. The 30-kDa form retains RNase H1 activity, as determined by renaturation gel assay. The amount of proteolysis observed depends on the procedure used in preparing the cell extracts for protein analysis. The cleavage site on the amino acid sequence of the 39-kDa RNase H1 was determined by N-terminal sequence analysis of the 30-kDa proteolytic form. The cut occurs between two arginines located at the amino terminus region of the protein. The pattern of proteolysis was examined for both the wild-type RNase H1 and a mutant RNase H1 that was constructed in this work. In the mutant the second arginine of the cleavage site was changed to a lysine. Comparisons of the expression of the wild-type and altered protein in two different E coli strains demonstrate that the protease responsible for the degradation has a specificity very similar to that of the OmpT protease. However, the proteolysis observed in an OmpT background in extracts, prepared by boiling the cells in SDS containing buffer, indicates that the protease may, unlike OH108. 相似文献
13.
C Mao M Wadleigh GM Jenkins YA Hannun LM Obeid 《Canadian Metallurgical Quarterly》1997,272(45):28690-28694
We have identified the yeast sphingosine resistance gene (YSR2) of Saccharomyces cerevisiae as encoding a protein that specifically dephosphorylates dihydrosphingosine 1-phosphate (DHS-1-P), and we refer to this protein as dihydrosphingosine-1-phosphate phosphatase. Overexpression of YSR2 conferred sphingosine resistance to the dihydrosphingosine-1-P lyase-defective mutant (JS16) of S. cerevisiae, which is hypersensitive to sphingosine. The ysr2Delta deletion mutant of S. cerevisiae accumulated DHS-1-P compared with its wild type strain upon labeling with D-erythro-[4, 5-3H]dihydrosphingosine, whereas overexpression of YSR2 increased dephosphorylation of DHS-1-P. An epitope-tagged fusion protein (YSR2-Flag) was partially purified and found to specifically dephosphorylate DHS-1-P to yield dihydrosphingosine. YSR2 failed to dephosphorylate ceramide 1-phosphate or phosphatidic acid. Functionally, the mutant bearing the ysr2Delta deletion decreased labeling of sphingolipids and increased labeling of glycerolipids dramatically following in vivo labeling with D-erythro-[3H]dihydrosphingosine, but it slightly affected labeling of sphingolipids with inositol. Taken together, these results identify YSR2 as dihydrosphingosine-1-phosphate phosphatase. They also raise the intriguing possibility that phosphorylation followed by dephosphorylation is required for incorporation of exogenous long chain sphingoid bases into sphingolipids. 相似文献
14.
15.
L Banci I Bertini KL Bren HB Gray P Sompornpisut P Turano 《Canadian Metallurgical Quarterly》1997,36(29):8992-9001
The solution structure of oxidized Saccharomycescerevisiae Cys102Ser iso-1-cytochromechas been determined using 1361 meaningful NOEs (of 1676 total) after extending the published proton assignment [Gao, Y., et al. (1990) Biochemistry 29, 6994-7003] to 77% of all proton resonances. The NOE patterns indicate that secondary structure elements are maintained upon oxidation in solution with respect to the solid state and solution structures of the reduced species. Constraints derived from the pseudocontact shifts [diamagnetic reference shift values are those of the reduced protein [Baistrocchi, P., et al. (1996) Biochemistry 35, 13788-13796]] were used in the final stages of structure calculations. After restrained energy minimization with constraints from NOEs and pseudocontact shifts, a family of 20 structures with rmsd values of 0.58 +/- 0.08 and 1.05 +/- 0.10 A (relative to the average structure) for the backbone and all heavy atoms, respectively, was obtained. The solution structure is compared with the crystal structure and the structures of related systems. Twenty-six amide protons were detected in the NMR spectrum 6 days after the oxidized lyophilized protein was dissolved in D2O (pH 7.0 and 303 K); in an analogous experiment, 47 protons were observed in the spectrum of the reduced protein. The decrease in the number of nonexchanging amide protons, which mainly are found in the loop regions 14-26 and 75-82, confirms the greater flexibility of the structure of oxidized cytochrome c in solution. Our finding of increased solvent accessibility in these loop regions is consistent with proposals that an early step in unfolding the oxidized protein is the opening of the 70-85 loop coupled with dissociation of the Met80-iron bond. 相似文献
16.
The yeast YCC5 gene encodes a putative amino acid permease and is homologous to GNP1 (encoding a high-affinity glutamine permease). Using strains with disruptions in the genes for multiple permeases, we demonstrated that Ycc5 (which we have renamed Agp1) is involved in the transport of asparagine and glutamine, performed a kinetic analysis of this activity, and showed that AGP1 expression is subject to nitrogen repression. 相似文献
17.
PP Poon X Wang M Rotman I Huber E Cukierman D Cassel RA Singer GC Johnston 《Canadian Metallurgical Quarterly》1996,93(19):10074-10077
Movement of material between intracellular compartments takes place through the production of transport vesicles derived from donor membranes. Vesicle budding that results from the interaction of cytoplasmic coat proteins (coatomer and clathrin) with intracellular organelles requires a type of GTP-binding protein termed ADP-ribosylation factor (ARF). The GTPase cycle of ARF proteins that allows the uncoating and fusion of a transport vesicle with a target membrane is mediated by ARF-dependent GTPase-activating proteins (GAPs). A previously identified yeast protein, Gcs1, exhibits structural similarity to a mammalian protein with ARF-GAP activity in vitro. We show herein that the Gcs1 protein also has ARF-GAP activity in vitro using two yeast Arf proteins as substrates. Furthermore, Gcs1 function is needed for the efficient secretion of invertase, as expected for a component of vesicle transport. The in vivo role of Gcs1 as an ARF GAP is substantiated by genetic interactions between mutations in the ARF1/ARF2 redundant pair of yeast ARF genes and a gcs1-null mutation; cells lacking both Gcs1 and Arf1 proteins are markedly impaired for growth compared with cells missing either protein. Moreover, cells with decreased levels of Arf1 or Arf2 protein, and thus with decreased levels of GTP-Arf, are markedly inhibited for growth by increased GCS1 gene dosage, presumably because increased levels of Gcs1 GAP activity further decrease GTP-Arf levels. Thus by both in vitro and in vivo criteria, Gcs1 is a yeast ARF GAP. 相似文献
18.
19.
A Herscovics 《Canadian Metallurgical Quarterly》1999,1426(2):275-285
The properties of the N-glycan processing glycosidases located in the endoplasmic reticulum of Saccharomyces cerevisiae are described. alpha-Glucosidase I encoded by CWH41 cleaves the terminal alpha1, 2-linked glucose and alpha-glucosidase II encoded by ROT2 removes the two alpha1,3-linked glucose residues from the Glc3Man9GlcNAc2 oligosaccharide precursor while the alpha1,2-mannosidase encoded by MNS1 removes one specific mannose to form a single isomer of Man8GlcNAc2. Although trimming by these glycosidases is not essential for the formation of N-glycan outer chains, recent studies on mutants lacking these enzymes indicate that alpha-glucosidases I and II play an indirect role in cell wall beta1,6-glucan formation and that the alpha1,2-mannosidase is involved in endoplasmic reticulum quality control. Detailed structure-function studies of recombinant yeast alpha1,2-mannosidase are described that serve as a model for other members of this enzyme family that has been conserved through eukaryotic evolution. 相似文献
20.
This work describes the phosphorylation of Saccharomyces cerevisiae Ras proteins and explores the physiological role of the phosphorylation of Ras2 protein. Proteins expressed from activated alleles of RAS were less stable and less phosphorylated than proteins from cells expressing wild-type alleles of RAS. This difference in phosphorylation level did not result from increased signaling through the Ras-cAMP pathway or reflect the primarily GTP-bound nature of activated forms of Ras protein per se. In addition, phosphorylation of Ras protein was not dependent on proper localization of the Ras2 protein to the plasma membrane nor on the interaction of Ras2p with its exchange factor, Cdc25p. The preferred phosphorylation site on Ras2 protein was identified as serine 214. This site, when mutated to alanine, led to promiscuous phosphorylation of Ras2 protein on nearby serine residues. A decrease in phosphorylation may lead to a decrease in signaling through the Ras-cAMP pathway. 相似文献