共查询到20条相似文献,搜索用时 0 毫秒
1.
AlSi10Mg粉末激光选区熔化残余应力场数值模拟 总被引:1,自引:0,他引:1
使用有限元法对AlSi10Mg激光选区熔化残余应力场进行模拟。建立有限元传热模型,将激光热源视为三维高斯体热源,实现在粉床上的移动加载,分别从材料的粉末态与实体态两种单元属性出发,考虑热物性参数和激光能量吸收率随温度变化的特性,进行间接热-应力耦合分析,重点研究激光功率、扫描速度及基板预热温度对残余应力场的影响规律。结果表明:残余应力最大值出现在基板与粉床接触位置,且y向残余应力(平行扫描方向)大于x向残余应力(垂直扫描方向);Von Mises等效应力和y向残余应力随激光功率的增大逐渐增大;随扫描速度的增大逐渐减小;随基板预热温度的升高逐渐降低。 相似文献
2.
建立了一个零件尺度的模型,采用收缩体积法模拟预测了激光选区熔化(Selective Laser Melting,SLM)成形AlSi10Mg合金悬臂梁的变形,研究了几何结构、扫描方式以及预热温度对悬臂梁残余变形的影响。结果表明,模拟计算的翘曲方向和变形趋势与试验测量结果相符;悬臂梁的厚度越大其刚度越大,抵御变形的能力越强;提高预热温度可以有效减小零件的变形。 相似文献
3.
《金属学报》2017,(8)
利用激光选区熔化(selective laser melting,SLM)成形技术对Al Si10Mg铸造铝合金的成形进行了工艺研究,获得了致密的成形,并对其沉积态和热处理态试样进行了静态拉伸性能测试和显微组织分析。结果表明:对于Al Si10Mg,其SLM沉积态的常温拉伸强度远高于铸件标准,延伸率与铸态相当;退火工艺对SLM试样的组织及力学性能有着重要的影响,随着退火温度的提高,试样微观组织发生改变,在300℃、2 h退火工艺下,原本均匀分布的颗粒状Si聚集长大为针状,使得试样的强度下降,延伸率升高。抗拉强度由沉积态的507~518 MPa下降到378~406 MPa,延伸率由沉积态的3.0%~3.5%增加到6.5%~9.5%。 相似文献
4.
本文首先制备了含有1.5%(质量分数)TiC的2024铝合金粉末,并将其加入AlSi10Mg合金粉末中,形成AlSi10Mg-2024(TiC)混合粉末,然后采用激光选区熔化工艺对混合粉末成形,并对其沉积态和T6热处理态的显微组织及力学性能进行了表征。结果表明:激光选区熔化过程中2024铝合金中的TiC颗粒可作为异质形核点,促进Al形核,进而抑制粗大柱状晶的形成,显著细化铝合金的显微组织,并弱化了〈100〉//BD(Build direction,生长方向)丝织构的形成。经过T6热处理(520℃固溶2 h,190℃时效10 h)后,AlSi10Mg-2024(TiC)合金仍保持较高的力学性能,抗拉强度达到400 MPa。而经T6热处理后AlSi10Mg合金的强度仅为260 MPa。这是因为添加2024合金可以引入Cu元素,在时效过程中析出第二相粒子,强化铝合金基体。另外,时效过程中析出的纳米Si颗粒也可对T6热处理后的AlSi10Mg-2024(TiC)合金起到一定强化作用。 相似文献
5.
6.
选区激光熔化成形技术常用于复杂构件的制造,其成形件的力学性能甚至优于热处理后传统铸造件的。在选区激光熔化成形过程中,易出现球化等缺陷,会降低零件的致密度和力学性能,进而影响产品的使用。以AlSi10Mg合金为例,从材料、设备及工艺等参数选择的角度对如何减少合金选区激光熔化成形件球化现象、提高致密度进行了分析。结果表明,氧含量低和粒度小的粉末颗粒可减少球化现象,选择合适的工艺参数,可提高零件的致密度。 相似文献
7.
《焊接技术》2020,(2)
利用激光选区熔化成形技术(selective laser melting, SLM)对AlSi10Mg的成形进行了工艺研究,对不同激光工艺参数的材料致密化行为及显微组织特征进行了研究,分析了熔池底部气孔形成机理,对成形态和热处理态试样进行力学性能测试。结果表明:激光能量密度过高或过低均不能得到最佳致密度,当激光功率350 W,激光扫描速度1 800 mm/s时,致密度达99.9%。选用最佳工艺参数下成形态试样的抗拉强度达473 MPa,屈服强度达289 MPa,远优于铸件标准。在270℃保温2 h退火制度下,过饱和固溶在α-Al中的Si元素析出,固溶强化的作用减弱,晶粒粗化,抗拉强度及屈服强度均下降。伸长率和断面收缩率分别提高了14.5%和50.7%。 相似文献
8.
为了提高轻质合金3D打印的耐磨、耐蚀性能,对激光选区熔化(SLM)铝合金(EOS:AlSi10Mg)打印成形后进行表面微弧氧化。采用应力分析仪、扫描电子显微镜、高温摩擦磨损、中性盐雾试验箱等设备,进行了残余应力测试,微观组织分析,摩擦磨损和腐蚀性能试验。结果表明,3D打印铝合金试样直接进行微弧氧化,由于残余应力(200MPa左右)较大,微弧氧化时表面氧化反应过程中促进了应力释放,使微弧氧化层加剧产生粗大裂纹;对打印后试样进行去应力热处理后,微弧氧化后表面仅见少量微小的工艺扩展裂纹。去应力后的微弧氧化层表面,平均摩擦因数由0.545降低到0.441,腐蚀环境后的抗腐蚀等级由9级提高到10级,证明3D打印激光立体成形热应力对成形零件的微弧氧化工艺性能影响较大。 相似文献
9.
10.
通过模拟仿真与实验结合研究粉末粒径对选区激光熔化(SLM)可加工性的影响。以3种粒径AlSi10Mg粉末为对象,基于离散元和流体力学数值模拟方法研究SLM铺粉和粉末熔化/凝固介观行为,并对成形样品进行宏观成形质量检测。结果表明,铺粉过程中,粒径小于20μm的粉末剧烈团聚形成大量空隙,粒径大于53μm粉末易形成少量大的空隙,中等粒径粉末床相对密度比细粒径和大粒径分别高7.69%和3.17%。单层粉末床熔融时,铺粉质量不均匀,细粒径与粗粒径熔道不规则。但经历多层熔化后,细粒径熔道缺陷部分缓解。随着粒径的增加,熔道表面平整度下降,细粒径粉末样品存在较多孔隙,粗粒径粉末存在少量未熔合缺陷。中等粒径粉末SLM可加工性最好,样品相对密度达到99.8%,比细粒径和粗粒径分别高1.4%和0.4%。 相似文献
11.
利用选区激光熔化成形技术制备了纯AlSi10Mg合金及碳纳米管(carbon nanotubes,CNTs)-AlSi10Mg复合材料。当添加CNTs含量为0.05%(质量分数)时具有一定增强效果,但随着CNTs添加量增大,复合材料性能却因为缺陷的增加而明显下降。木实验利用纳米CT技术对纯合金及CNTs(0.5%)-AlSi10Mg复合材料进行缺陷的三维重构。结果表明,添加0.5%的CNTs后,成形缺陷体积所占比例由12%增加至46%;气孔型缺陷数量明显增加,并且等效直径相对较大。CNTs在粉体中的团聚及对气体的吸附作用是两种类型缺陷增加的根本原因。 相似文献
12.
《特种铸造及有色合金》2021,(9)
采用光滑粒子流体动力学方法建立了单道次选区激光熔化(SLM)的三维数学模型,耦合了流动场、温度场、表面张力以及润湿作用对选区激光熔化316L不锈钢粉末过程进行数值模拟研究。分析了不同激光功率对熔池长度和宽度的影响以及表面张力对SLM过程的影响,并与有限元模拟软件的模拟结果以及试验结果进行对比。结果表明,熔池的长度与宽度随着激光功率的增大而增大,同时也验证了马兰戈尼力是SLM过程的主要驱动力。 相似文献
13.
《特种铸造及有色合金》2020,(5)
进行了激光选区熔化AlSi10Mg合金退火态显微组织观察、力学性能测试,并对AlSi10Mg合金进行不同热处理。结果表明,激光选区熔化AlSi10Mg合金的力学性能优于ZL104和LD2合金,扫描方向组织呈扫描道带状堆积结构,成形方向呈不规则的鱼鳞状结构;随着固溶温度从525℃提高到545℃,AlSi10Mg合金的抗拉强度和屈服强度均降低,伸长率和断面收缩率均有降低的趋势,显微组织过烧现象越来越严重,导致AlSi10Mg铝合金力学性能随之下降。从力学性能和金相组织综合考虑,AlSi10Mg铝合金在525℃下固溶最佳。 相似文献
14.
通过对影响选区激光熔化(SLM)成形件致密度的主要因子—激光功率和扫描速度进行参数设计,引入三种能量密度模型,分析能量密度对SLM成形AlSi10Mg合金致密度的影响.结果表明:能量密度过高或过低均不能得到最佳致密度,合适的激光能量输入才能提高零件的致密度;当光斑直径为30 μm,能量密度相同时,激光功率150 W成形... 相似文献
15.
16.
17.
18.
针对选区激光熔化成形AlSi10Mg铝合金焊接过程中氢气孔敏感性高的问题,采用固溶脱氢与真空固溶脱氢的方法对比了脱氢处理对合金激光焊接接头孔隙缺陷的影响,分析了不同状态下激光焊焊缝气孔分布、组织演变及力学行为。结果表明,固溶处理能够有效减少选区激光熔化成形AlSi10Mg铝合金激光焊焊缝气孔率,且真空固溶处理效果最好,气孔率从沉积态激光焊接焊缝的2.64%降到真空固溶态焊缝的0.14%;通过对接头组织的演变与基板物相形态、成分的变化分析阐述了孔隙出现的原因,揭示了真空热处理是解决由于基板中预先存在的较高含量的氢导致焊缝氢气孔形成的有效方法。固溶后母材硬度明显下降,各试板焊缝的平均硬度为80HV,较为一致;固溶态试板焊接接头抗拉强度为143MPa,低于沉积态接头,但延伸率增加到了24%,表现为韧性断裂特征。 相似文献
19.