首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
同步相量测量单元(PMU)能够直接获取发电机动态过程中的功角等量测数据,由于实际的量测数据中含有随机噪声,为了得到更精确的发电机状态信息,有必要对量测数据进行滤波处理。提出一种基于无迹粒子滤波(UPF)的发电机动态状态估计新方法。首先,该方法基于发电机四阶动态方程建立了发电机动态状态估计模型,其次,在粒子滤波(PF)的框架下,该方法采用无迹卡尔曼滤波(UKF)求解PF的重要性密度函数,且在生成预测粒子的过程中使用了最新的量测信息,使得粒子的分布更加接近真实状态的后验概率分布。最后,通过美国西部系统协调委员会(WSCC)3机9节点系统和某实际电网系统的算例测试,将所提算法与UKF及PF的性能进行了对比。仿真结果表明,UPF在估计精度及对噪声的鲁棒性方面均优于PF与UKF。  相似文献   

2.
随着汽车充电成为新型重要负荷,为确保此时配电网运行与控制安全,对其进行实时准确的态势感知,提出一种基于卷积神经网络和门控循环单元的短期负荷预测与无迹粒子滤波算法自适应混合的配电网动态状态估计方法。结合使用卷积神经网络和门控循环单元进行短期负荷预测,将预测得到的有功与无功功率进行潮流计算,再与无迹粒子滤波量测估计值自适应加权得到电压幅值和相角状态估计结果。以IEEE33节点配电网为例,验证了所提状态估计方法的准确性与面对不良数据时的鲁棒性。  相似文献   

3.
封居强  孙亮东  蔡峰  伍龙  卢俊 《电源技术》2022,(11):1270-1274
电池的荷电状态(SOC)是电池管理系统(BMS)的重要指标,然而锂离子电池是一个具有复杂性噪声特点的非线性动态系统,精准估计SOC十分困难。针对无迹卡尔曼滤波(UKF)估计SOC时受模型精度和系统噪声预定变量影响较大问题,基于改进的PNGV模型提出一种两次非线性变换预测系统闭环端电压方法,采用动态函数提高卡尔曼增益,从而提高SOC估计精度和效果。通过充放电混合动力脉冲能力特性(HPPC)和混合放电比实验验证可得该方法具有良好的估计效果,在电压和电流变化剧烈的条件下,平均绝对误差为0.11%,精度相对提高了58%,均方根误差为0.15%,稳定性相对提高了63%。  相似文献   

4.
配电网状态估计是配电管理系统的重要组成部分。用于状态估计的数据通常存在不同程度的随机噪声干扰,不能直接用于配电网的运行分析,为获得更为精确的配电网状态信息,必须对量测数据进行滤波处理。针对无迹卡尔曼滤波(Unscented Kalman Filter,UKF)灵活性差、滤波精度易受参数及滤波初值的制约;标准粒子滤波(Particle Filter,PF)选取重要性密度函数不合理的缺陷,文章将无迹粒子滤波(Unscented Particle Filter,UPF)算法应用于配电网状态估计。该算法将UKF和PF融合,用UKF结合最新的量测信息为PF生成重要性密度函数,将落在先验概率密度区域的粒子转移到高似然区域内,提高了PF的滤波性能。通过IEEE 33节点系统算例分析,结果表明,UPF较UKF和PF具有更好的估计性能,且灵活性强,是一种有效的状态估计方法。  相似文献   

5.
高博洋  刘广忱  张建伟  王生铁 《电池》2021,51(3):270-274
通过电池脉冲放电实验,得到脉冲放电曲线,对曲线回弹段进行二阶指数拟合,结合电压零输入响应,离线辨识锂离子电池二阶RC等效电路模型的参数.为避免非线性函数线性化处理出现的误差,提高算法精度,采用无迹卡尔曼滤波(UKF)估计荷电状态(SOC).与扩展卡尔曼滤波(EKF)和安时积分法估计相比,UKF的估计误差在1%以内,精度...  相似文献   

6.
利用传统的安时积分法估计全钒液流电池(vanadium redox flow battery,VRB)的荷电状态(state of charge,SOC),常常会因为累积误差造成估计误差增大的问题。该文针对这一问题,以一阶RC等效电路模型为基础,采用无迹卡尔曼滤波(unscented Kalman filter,UKF)算法对安时积分法估计结果进行修正,提高SOC估计精度。此外,UKF算法同时可以在收敛后准确地实时估计电池模型中的内阻,而电池的内阻可以表征其健康状态(state of health,SOH),因此UKF算法可根据内阻的估计结果评价电池的SOH。在工况下对电池进行测试性充放电实验,实验结果表明,UKF算法可以快速完成电池SOC的精确估计,绝对误差小于2%,并能准确地估计出电池的内阻,为电池SOH的确定提供参考依据。  相似文献   

7.
应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法解决该问题。AUKF算法是一种循环迭代算法,可以实时估计电池模型中的欧姆内阻,提高电池模型准确性,从而提高电池SOC估计精度。另外,电池的欧姆内阻可以表征电池的健康状态(state of health,SOH),因此还可以根据电池的欧姆内阻估计出电池的SOH。在设定工况下对电池做充放电实验,实验分析表明,与UKF相比,AUKF提高了电池SOC估计的精度,并能准确的估计出电池的欧姆内阻。  相似文献   

8.
为了更好地优化电池的能量管理,提高电池的利用效率,加强电池的安全性能,有必要对锂离子电池的荷电状态(SOC)和健康状态(SOH)进行精确估计。为解决噪声协方差取值和粒子采样分布问题,该文首先提出自适应扩展粒子滤波(AEPF)算法,根据状态向量预测的准确度自适应调整噪声协方差,并利用扩展卡尔曼滤波实现粒子分布函数的局部线性化。随后利用双自适应扩展粒子滤波(DAEPF)算法进一步实现电池SOC和SOH的联合估计,避免电池使用过程中模型参数变化对SOC估计的影响,并结合多时间尺度的方法节约所需的计算资源。最后在动态工况条件下对不同电池模型与算法进行对照实验,结果表明,改进后的算法收敛速度明显提升,且能够显著地提高电池的SOC与SOH的估计精度。  相似文献   

9.
电动汽车的锂离子动力电池退役后,具备在储能系统等场合继续使用的潜力,其SOC(电池荷电状态)的准确估计对于退役电池的梯次利用具有重要意义。针对传统UKF(无迹卡尔曼滤波)算法出现模型参数不确定及采样噪声干扰导致估算精度下降甚至系统发散等问题,提出一种HUKF(H_∞无迹卡尔曼滤波)算法。该算法在UKF基础上,利用H_∞控制理论引入调整因子来修正UKF中计算协方差时遇到的病态矩阵,提高对异常值和非高斯噪声的鲁棒性。实验结果表明,改进算法以较快的收敛速度实现了更精确的SOC估计,且鲁棒性较好,满足了退役电池SOC估计的实际需求。  相似文献   

10.
针对锂离子动力电池健康状态(SOH)估计问题,提出一种自适应无迹卡尔曼滤波算法(AUKF),通过协方差自适应匹配方法抑制噪声干扰,实现SOH的准确估计。建立了锂离子动力电池的状态空间模型,采用AUKF实时估计电池内阻,利用电池欧姆内阻和SOH之间的内在关系,进而得到电池的SOH。实验结果表明,利用所提方法估计SOH准确、可靠,为电池管理系统中状态估计提供了一种有效的方法。  相似文献   

11.
在各种各样的装置与设备中,锂离子电池剩余寿命(remaining useful life,RUL)的准确预测起着重要作用,越来越多的研究人员开始重视对锂离子电池可靠性和安全性预测的研究。粒子滤波(particle filter,PF)方法一般用于模型结构已知或者可以获得模型的情况下,来估计和预测时间序列。改进已有的锂离子电池容量经验指数衰退模型,降低了状态方程参数估计的个数。实验比较了基于PF方法,原指数经验模型及改进经验模型的锂离子电池剩余寿命预测的精度,其结果显示改进后的模型提高了预测精度,降低了误差率,并且缩小了不确定性范围。  相似文献   

12.
针对传统的无迹粒子滤波(unscented particle filter, UPF)存在不准确的新息向量及未知的量测噪声协方差矩阵导致估计精度低的问题,提出一种改进Att-LSTNet与UPF融合的主动配电网预测辅助状态估计(forecasting-aided state estimation, FASE)方法。首先,采用引力搜索算法(gravitational search algorithm, GSA)对支持向量回归(support vector regression, SVR)的关键参数进行优化处理,利用历史数据建立GSA-SVR模型,并将其引入至Att-LSTNet模型的输出层,构建一种增强预测模型。然后,利用UPF中的新息向量来训练该模型,并结合孤立森林算法和箱线图法对原始新息向量进行监控和修正。最后,针对量测噪声协方差矩阵未知的情况,结合修正后的新息向量和UPF计算出未知量测噪声协方差矩阵,并进行状态估计。基于IEEE33与IEEE118节点标准配电系统的算例结果表明,所提出的方法在估计精度、泛化能力和鲁棒性等方面具有优越性。  相似文献   

13.
扩展卡尔曼滤波(EKF)算法估计锂离子动力电池荷电状态(SOC)时,由于系统噪声的不确定,可能导致估计算法不精确,并且算法中的线性化处理受电池模型的影响很大。为了解决上述两个问题,本文采用改进Sage-Husa的自适应无迹卡尔曼滤波法(AUKF)来动态地估计多元复合锂离子电池的SOC。与EKF相比,改进Sage-Husa的自适应卡尔曼滤波法提高了SOC估计的精度,并能够实时修正微小的模型误差带来的SOC估计误差,实时的工况模拟证明了该算法更适用于多元复合锂离子电池的动态SOC估计。  相似文献   

14.
高精度的状态估计是配电网安全稳定运行的基础。粒子滤波(Particle Filter,PF)选取重要性密度函数不准确以及卡尔曼框架下滤波方法对非线性系统滤波精度有限的问题,把容积粒子滤波(Cubature Particle Filter,CPF)引入配电网状态估计中。鉴于容积卡尔曼滤波(Cubature Kalman Filter,CKF)在状态更新阶段融入了最新量测,因此在粒子滤波框架下,利用CKF算法设计PF的重要性密度函数,采样获得的带权值粒子更加逼近真实后验分布,提高了状态估计精度。在三相不平衡配电网中进行仿真分析,结果表明,CPF算法比UKF滤波精度高。  相似文献   

15.
16.
针对锂离子电池剩余寿命预测精度低、泛化能力差等问题,提出基于改进粒子滤波的预测方案。首先,提出双高斯模型作为退化经验模型,拟合锂离子电池的容量退化过程。然后,通过先验知识设置退化模型的初始参数,并利用粒子滤波方法进行参数更新。针对预测过程中出现的粒子退化问题,提出高斯混合方法进行粒子重采样,拟合重采样过程中粒子复杂的非线性分布和长尾分布,保证预测结果的概率密度分布状况均匀且集中。最后在不同的数据集上进行了实验验证,结果表明所提出的改进粒子滤波方案具有较高的精度和较强的鲁棒性。  相似文献   

17.
针对无迹卡尔曼滤波(UKF)和粒子滤波(PF)状态估计精度低的缺点,把平方根形式的无迹卡尔曼粒子滤波(SR-UPF)引入到电力系统状态估计中.在该方法中,无迹卡尔曼滤波作为概率密度函数进行更新,利用Markov链蒙特卡罗方法解决重采样后粒子的匮乏问题,利用平方根形式解决状态估计的收敛速度和稳定性问题.在保障精度的情况下...  相似文献   

18.
由于同步相量测量单元(phasor measurement unit,PMU)测得数据中存在误差和噪声,无法直接作为调度和控制的参考数据。提出一种基于无迹变换强跟踪滤波(unscented transformation strong tracking filter,UTSTF)的发电机动态状态估计。该方法利用对称采样策略进行sigma点采样,通过引入渐消因子来修正预测协方差矩阵,在线调整增益矩阵,滤波得到动态过程中发电机状态变量的估计值。算例结果表明,UTSTF无论在跟踪速度、精度以及对噪声的鲁棒性能上较无迹卡尔曼滤波和强跟踪滤波均有所提高。  相似文献   

19.
为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalman filter,SRUKF)进行改进,提出一种自适应SRUKF(adaptive square-root unscented Kalman filter,ASRUKF)算法,该算法通过对状态方差阵和噪声方差阵平方根的递推估算,确保了状态和噪声方差阵的对称性和非负定性。验证结果显示,相比于SRUKF算法,ASRUKF算法能够得到精度更高的SOC估计值,并在FUDS工况下将最大SOC估计误差降低4%。针对电池欧姆内阻和容量参数随着电池的老化而变化的现象,对内阻和容量进行实时在线估计,在此基础上完成对SOH参数的预测。验证结果表明,联合估计算法对电池的欧姆电阻和容量有一个较好的估计,进一步提升了电池状态的估计精度。  相似文献   

20.
锂电池荷电状态(SOC)的准确估计对提高电池的动态性能和能量利用率至关重要。针对现有卡尔曼滤波SOC估计方法存在估计精度低、鲁棒性差等问题,采用锂离子电池的二阶电阻-电容等效电路模型,通过HPPC循环脉冲实验和动态应力测试工况放电实验,结合带可变遗忘因子的递推最小二乘法(VFFRLS)及开窗理论,对等效电路模型参数进行在线辨识,提出利用自适应扩展卡尔曼滤波(AEKF)算法和H滤波算法联合估计SOC的方法。结果表明:与AEKF算法相比,在DST工况下该算法可以使电池荷电状态估计的最大绝对误差减小3.902 9%,平均绝对误差减小0.962 2%,均方根误差减小0.551 5%。与H滤波算法相比,在DST工况下该算法可以使电池荷电状态估计最大绝对误差减小1.309%,平均绝对误差减小2.893 4%,均方根误差减小2.613 6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号