首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以针—球电极间隙变压器油为研究对象,基于场致电离机理,建立用于表述液体电介质流注预放电过程中载流子的产生及输运的偏微分方程,结合电场泊松方程,以及热扩散方程,仿真研究纳秒脉冲电压下变压器油预击穿特性。得到了预击穿过程中电场强度随电压幅值、极性以及脉冲上升沿时间的变化规律。仿真结果表明:流注速度随电压幅值的增大而增大;负流注相比于正流注轴向传播距离小径向传播距离大;负流注起始放电电压高于正流注,且起始速度大于正流注;正脉冲上升沿时间越短所形成流注半径越大,上升沿时间大于50 ns的负脉冲条件下产生的流注易消散。本文的研究工作和取得的结论有助于加深对变压器油中放电起始、发展过程的认识以及对液体电介质放电机制的理解。  相似文献   

2.
变压器内部局部放电的程度是反映变压器绝缘油老化程度、评估变压器油使用寿命的重要依据.本文采用两种不同试验方法、4种电极布置形式对6种不同含水量的变压器绝缘油进行了局部放电试验,分析绝缘油含水量、试验方法、电极布置形式对局部放电起始电压结果的影响.结果表明:局部放电起始电压不仅与液体电介质本身的物理和化学性质有关,也受到电极布置形式、含水量和试验方法的影响;其中试验方法影响了试验结果的分散性,水分由于改变了液体电介质本身的物理和化学性质,从宏观介电性能、微观电离过程两方面影响了局部放电起始电压,含水量越大,电极布置形式、试验方法对局部放电起始电压的影响越小.随着含水量的增加,影响绝缘油局部放电起始电压的主要因素由电极布置形式、试验方法转变为绝缘油物化性质本身.  相似文献   

3.
液体电介质的绝缘性能与其温度紧密相关,为了探究含金属微粒流动变压器油的放电特性,采用有限元法对不同油温下流动油中金属微粒的运动轨迹,以及金属微粒位置变化对电场的畸变程度进行了仿真,阐释了局部放电(PD)和击穿放电的过程及机理。同时,通过模拟实验,得到了不同油温下PD幅值、放电次数和相位的放电图谱、击穿电压以及放电后油色谱数据。结果表明:温度70℃时,随温度升高,PD逐渐减弱,油中气体含量呈减小趋势,击穿电压逐渐增大;当温度从70℃升高至80℃时,PD开始增强,油中气体含量开始增加,击穿电压开始减小;PD的相位主要集中在90°和270°附近,无明显的极性效应。  相似文献   

4.
变压器油道中的悬浮气泡受电磁场、温度场和流场的综合作用,呈现出极其复杂的形态演变、运动规律和放电过程,严重威胁变压器油的绝缘性能,因此研究变压器油中气泡放电机制具有重要意义。目前,国内外学者已在该领域取得了大量的研究成果,该文重点回顾了相关研究人员近二十年对含气泡变压器油局部放电特性的探索,以研究手段为主线,分别从理论分析、仿真模拟及试验测试三个角度对现有成果进行了系统地梳理和论述,研究内容涵盖气泡放电机理与模型、动力学行为及放电试验特性等,但总体来看,含气泡变压器油绝缘失效机制的研究仍面临诸多科学问题与挑战。在此基础上,该文结合分子模拟、多物理场耦合及数字孪生等理论和技术展望了含气泡变压器油绝缘性能的潜在研究方向。  相似文献   

5.
《高电压技术》2021,47(3):1037-1045
电晕放电作为变压器油中局部放电主要形式之一,危害换流变压器的安全运行。纳米改性可以提高变压器油的绝缘性能,但直流电压下电晕放电的改性效果和机理研究不足。为此制备了二氧化钛纳米改性变压器油,采用针板缺陷进行了电晕放电过程中的图像拍摄、脉冲电流及光脉冲的测量,并测量了油中的电荷输运特性。研究发现,负极性直流电压下,纳米变压器油的击穿电压提高了23.8%;电晕放电强度也明显降低:外施电压50 kV时,纳米变压器油中电晕发光面积减小了86.0%,光脉冲和电流脉冲的频率分别减小75.6%和76.3%,幅值分别减小92.8%和78.6%。纳米粒子抑制电晕放电是因为纳米粒子向变压器油中引入更多浅陷阱促使电子从电离区逃脱,同时其极化捕捉作用削弱了电子碰撞电离,抑制了电子崩起始;此外带负电的纳米粒子的形成相当于增加了负离子数量、降低了其迁移率,从而降低了针尖处电场强度。该研究可为直流电压下变压器油电晕放电的抑制方法和纳米粒子的选型提供依据。  相似文献   

6.
正极性电压下空间电荷对空气间隙放电击中点的影响   总被引:1,自引:1,他引:0  
人们对空间电荷对放电过程的影响研究较少,但很多试验现象体现了空间电荷的作用。为了研究空间电荷对放电击中点的影响,建立了试验平台,并用高速摄像机观测了放电现象。正极性直流与雷电冲击联合加压试验与正雷电冲击电压试验,体现了预加直流电压产生的空间电荷对放电击中点的影响;正极性操作冲击电压试验,研究了不同电压幅值下放电击中点的变化。试验结果表明:正极性雷电冲击电压下,预加直流在针电极附近产生的空间电荷对空间电场的畸变作用不显著;在正极性操作冲击电压下,随着电压幅值的增加,空间电荷对针电极头部电场的屏蔽作用有所提高,放电点远离针电极头部的距离加大。  相似文献   

7.
植物绝缘油及其应用研究关键问题分析与展望   总被引:3,自引:0,他引:3  
李剑  姚舒瀚  杜斌  姚伟 《高电压技术》2015,41(2):353-363
植物绝缘油作为一种高燃点、可降解的环保液体电介质,被普遍认为是矿物绝缘油的良好替代品。目前,植物绝缘油已在配电变压器中得到良好应用,并逐步开始应用在大型电力变压器中。介绍了植物绝缘油及其应用研究的历史与现状,分析了植物绝缘油在制备方法、电气与理化特性以及植物油纸绝缘寿命模型和植物绝缘油变压器故障诊断方法等方面取得的进展。通过对关键问题的分析,说明了植物绝缘油相比矿物绝缘油具有的一些新的优点。植物油纸绝缘可有效延缓绝缘纸的老化速率,通过良好的变压器设计和运行维护,植物绝缘油可提高变压器的过负荷能力,植物绝缘油变压器将比矿物绝缘油变压器具有更低的全寿命周期成本。最后,提出了植物绝缘油及其应用在未来研究中,应重点关注植物绝缘油化学及纳米改性、油中长间隙放电、植物绝缘油变压器运行维护和纳米植物绝缘油等方面的关键问题。  相似文献   

8.
卢家琪 《电力设备》2008,9(7):46-49
在强迫油循环的大型变压器中,油流带电引发的静电放电是威胁大型变压器安全运行的重要因素之一。对变压器油进行带电度测量,以便对带电度超标的变压器油采取措施并及时改善运行条件,以防止变压器因油流放电故障而造成变压器损坏。文章介绍了采用过滤法进行大型变压器油带电度检测仪器的原理和结构,制作过程中的改进以及国产油和进口油的带电度测试结果,实际大型变压器油的带电度测试结果。  相似文献   

9.
以不同浓度的TiO_2和SiO_2纳米改性变压器油为研究对象,通过光电检测法采集局部放电脉冲信号,探究纳米颗粒的添加对变压器油局部放电特性的影响。结果表明:纳米颗粒通过增加油中浅陷阱密度、畸变电场分布,可以有效降低载流子迁移率,从而抑制放电的发展。加入纳米颗粒后,变压器油的击穿电压和局部放电起始电压都有所提高,局放脉冲上升沿变化率降低。不同种类纳米颗粒对放电的不同阶段抑制效果不同,SiO_2纳米颗粒对放电的起始发展阶段抑制程度更大,TiO_2纳米颗粒对放电的预击穿阶段抑制效果更佳。  相似文献   

10.
换流变压器是特高压直流设备的重要组成部分,在不均匀电场作用下,换流变压器中会发生局部放电现象,可用楔形电极模型进行模拟。为研究油纸绝缘在楔形电极的局部放电特性,基于双极性电荷输运和流体动力学漂移扩散理论建立二维轴对称仿真模型,计算获得纳秒尺度下的微观放电图像,得到空间电荷和电场强度分布的变化过程,并讨论电压幅值、电荷迁移率、油纸界面电荷等影响因素对局部放电特性的影响。仿真结果显示,楔形油隙的放电发展过程主要分为油中电晕、油纸界面水平沿面放电和绝缘纸纵向放电3个阶段。油纸界面闪络电压随纸中电荷迁移率的增大呈现出先增大再减小的变化规律,当纸板的电子迁移率和空穴迁移率为10~(-13)m~2·v~(-1)·s~(-1)时,横向放电发展受到抑制,闪络电压最高;变压器油的电荷迁移率对放电过程影响较小。放电滞留在纸板表面的正极性界面电荷形成电荷"屏蔽层",对下一次的放电发展起到抑制作用,导致放电横向发展的速度和范围均随界面电荷量的增加而降低。该文的研究结果对阐明楔形电极的放电机理具有重要理论意义。  相似文献   

11.
介质阻挡放电系统中谐振问题的研究   总被引:14,自引:7,他引:7  
为了解决介质阻挡放电 (DBD)反应器放电性能随激励频率提高反而下降的问题 ,采用电荷电压测量等方法对DBD系统主要放电参量的变化规律进行了实验研究。结果表明 :由激励变压器漏感与电介质层等效电容引起的系统谐振是造成这一问题的主要原因。DBD系统谐振不但能引起放电间隙等效电压、电介质层等效电压、放电间隙等效电阻等放电参量的异常变化 ,降低DBD反应器放电性能 ,而且会对激励变压器与DBD反应器中电介质层的绝缘产生危害 ,影响DBD系统工作稳定性。减小激励电源漏感与合理分布DBD电介质层等效电容是解决DBD谐振问题的有效措施。  相似文献   

12.
根据变压器油中溶解气体分析技术,设计了针-板电极模型,将其置于纯油和油纸绝缘中在不同电压等级下进行放电老化实验,并通过加热器件模拟变压器内部局部过热现象对绝缘油进行加热老化。研究油中气体含量的变化趋势和放电、局部过热老化对绝缘油的影响。结果表明:放电强度较低时,老化后油中气体的含量基本不变;放电强烈时,油中气体含量出现了增加,其中H_2和C_2H_2含量增加明显。模拟变压器绕组局部过热实验中,当温度达到120℃以上时,除H_2、C_2H_2和C_2H_4外,油中各种气体含量增长明显。  相似文献   

13.
变压器的状态是否正常关系到电力系统的安全可靠稳定运行。文章以一起750kV三相一体变压器局部放电试验过程中发生的放电事故为例,分析了局部放电试验前后不同部位油中溶解气体的分布情况,以及发生放电后油中溶解气体的扩散过程,初步判断了故障部位,并通过内部检查得到了验证。  相似文献   

14.
天然酯绝缘油是一种高燃点的环保液体电介质,主要应用于变压器等电力设备中。油中溶解气体分析(DGA)是变压器故障诊断最有效的方式之一。关于天然酯绝缘油的油中溶解气体监测目前已有一定的研究成果,本文对天然酯绝缘油在油中溶解气体方面的研究进展进行了总体介绍,指出了天然酯绝缘油在未来应用中应注意的关键问题。  相似文献   

15.
X射线辐照对局部放电的影响   总被引:1,自引:1,他引:1  
为在电力变压器的局部放电检测和定位中利用X射线的激励作用,对X射线辐照条件下,油中固体介质内气隙放电以及油中放电进行了模拟试验,研究表明X射线可降低局部放电起始电压增加放电强度。  相似文献   

16.
油纸电容式变压器套管因性能好、成本低而被广泛采用。当电容屏存在边缘破损工艺缺陷时易发生局部放电,进而会改变油纸绝缘性能,缩短套管使用寿命,严重时危及电网设备安全运行。为研究电容屏破损局部放电过程变化规律,明确放电发展阶段,该文搭建了缺陷套管放电实验模型分析局放过程中相位谱图、放电量等参数发展规律,并基于实验规律及流体漂移扩散理论、固体双极电荷传输理论,建立了末屏缺陷针板沿面放电过程仿真模型,结合仿真中电荷形态变化、放电时间及油纸界面电荷密度分布对电容屏破损放电过程进行阶段划分:放电初始阶段,铝箔尖端电荷聚集发生电晕放电;放电发展阶段,尖端处带电粒子在电场作用下向油纸发展,小部分达到油纸界面产生沿面放电;放电破坏阶段,经过长时间沿面放电进入油纸发生预击穿,电场强度更大使带电粒子能量更高,冲击油纸表面造成油纸表面纤维素断裂炭化形成通道。仿真结果与实验结论相对应,证明了仿真的有效性。该文的研究成果进一步阐明了油纸套管电容屏工艺缺陷局部放电的过程及机理。  相似文献   

17.
《高压电器》2015,(3):15-21
油浸式变压器绝缘故障常常起源于局部放电造成的油纸绝缘劣化及老化,因此开展局部放电带电检测技术研究对于保证变压器的安全可靠运行意义重大。笔者在实验室中对所制作的针—板、悬浮电位两种模拟缺陷引起的局部放电超高频信号进行了研究,得到了两种缺陷在外施电压升高过程中的放电谱图,并分析了其产生原因及变化规律。结果表明:在纯净干燥变压器油中,针对针—板缺陷,首先在外施电压负半周峰值附近观察到放电信号,随着电压的升高,信号最终对称分布于正负半周峰值两侧;针对悬浮电位缺陷,最先于外施电压正负半周峰值处观察到放电信号,且随着电压升高,信号最终分布在第一和第三象限中。此外,笔者在实体变压器中设计安装了两种典型绝缘缺陷,并利用带电检测技术实现了对其局部放电信号的测量及分析,为该技术在变压器绝缘缺陷诊断中的实际应用奠定了基础。  相似文献   

18.
液体电介质作为绝缘材料用在电气设备中已经有一百多年的历史了,但是研究得较多的是非极性或极微弱极性的液体(ε≈1.8—2.5),如变压器油。其次是极性液体(ε≈3—6),如蓖麻油。而强极性液体(ε>80),如去离子水,这类液体的介电常数很大,电导率也很  相似文献   

19.
油纸绝缘中局部放电的典型波形及其频谱特性   总被引:23,自引:2,他引:23  
根据对变压器油纸绝缘内部常见缺陷的分析,进行了局部放电模型试验。通过考察不同类型放电的发展过程和电流脉冲的波形特征,发现油纸绝缘中产生的局部放电与空气中的放电过程表现出相似的发展规律。对应于不同的放电阶段,放电波形有较大差异,因而不同类型的放电脉冲具有不同的频谱特性。所得结果为深入研究绝缘介质中的局部放电的机理、放电脉冲在变压器绕组中的传播规律、局放检测系统的频率特性以及放电类型的波形识别提供了实验依据。  相似文献   

20.
为研究冲击电压下变压器油中阴极放电起始过程的物理模型,统计分析了不同冲击电压下稍不均匀场中变压器油的放电时延,利用Laue图获得了不同脉冲下的平均放电统计时延和放电形成时延,建立了稍不均匀场中阴极流注起始的"气泡"模型:阴极表面微凸起处的场致发射电流加热电极附近的液体;当液体达到一定过热度之后,过热液体内会产生气泡核心,气泡核心在场致发射电流的持续加热作用下会膨胀生长,直至气泡内放电产生。利用过热液体的汽化成核理论获得了成核时间的数学表达式,并结合F-N理论获得了放电统计时延和外施电场的关系式。结果表明,放电统计时延主要由电极附近过热液体的成核时间和气泡的膨胀形变时间组成,且成核时间占有主要部分;放电统计时延ts与间隙内电场E满足t_sE~3=ae~b/E。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号