首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
董安勇  苏斌  赵文博  杜庆治  彭艺 《激光与红外》2018,48(12):1547-1553
稀疏表示是以块为单位进行编码的,因此破坏了图像块间的相关性。针对上述问题,提出了基于卷积稀疏表示的红外与可见光图像融合算法。该算法采用交替方向乘子算法(ADMM)求解非下采样轮廓波变换(NSCT)域强边缘子带的卷积稀疏系数,完成特征响应系数的融合。同时,采用脉冲耦合神经网络(PCNN)模型的点火图完成NSCT域高频子带的融合。实验结果表明:该算法解决了稀疏表示的“块效应”问题,同时又兼具PCNN模型的视觉特性,可以有效地捕捉源图像的特征信息。另外,在主观视觉评价和客观质量评价方面均优于现有算法。  相似文献   

2.
图像融合指将多个传感器采集到的关于同一场景的图像信息经过处理,生成一幅质量更高、信息更丰富、描述更全面的新图像的过程。文章探讨和比较多种多尺度分析方法,并在传统融合算法的基础上提出一种基于改进型NSCT与PCNN相结合的可见光与红外图像融合算法。  相似文献   

3.
以稀疏表示理论为基础,研究了一种可见光和红外图像融合算法,提出了一种稀疏系数融合规则。首先,利用K-SVD算法对待融合图像的所有子区域进行字典学习,得到用于稀疏向量计算的过完备字典;然后,计算稀疏向量,利用正交匹配追踪算法进行求解;最后,提出一种基于稀疏向量最大元素绝对值的融合规则,完成可见光和红外图像的稀疏向量融合,得到融合图像。实验结果表明,融合结果明显优于传统的基于Maximum-L_1-Norm融合规则的融合结果。  相似文献   

4.
为了更好地突出红外与可见光融合图像中的目标信息,保留更多的纹理细节信息,提出了一种基于非下采样剪切波变换(non-subsample shearlet transform,NSST)域结合脉冲发放皮层模型(spiking cortical model,SCM)与改进的模糊C均值聚类(fuzzy C-means clustering,FCM)的红外与可见光图像融合算法。首先,用改进的FCM提取源红外图像中的红外目标信息;然后,将得到的红外图像与可见光图像的目标区域和背景区域进行NSST分解,得到各自的高低频子带图像;接着,对得到的不同区域采用不同的融合策略,其中,对于高频背景区域采用SCM模型与改进赋时矩阵进行融合;最后,使用NSST逆变换,得到最终的融合图像。仿真实验证明,与其他方法相比,本文算法得到的融合图像在主观视觉上红外目标信息突出,纹理细节信息丰富,在客观评价上,其信息熵和边缘保留因子达到最优。  相似文献   

5.
针对红外与可见光图像在融合过程中目标物体的边缘模糊导致细节丢失的问题,提出一种基于滚动引导滤波器(RGF)和卷积稀疏表示(CSR)的红外与可见光图像融合方法。首先,利用RGF和高斯滤波器对配准后的源图像进行多尺度分解;其次,针对基础层,通过构建对比显著图和权重矩阵进行融合;然后,针对细节层,利用交替方向乘子方法(ADMM)求解卷积稀疏系数,采用CSR融合规则完成特征响应系数融合;最后,经过重构得到融合结果图。实验结果表明,所提方法能够克服在目标物体的边缘处模糊导致细节信息丢失的问题,较好地保留源图像的对比度和边缘纹理信息,同时提高了多个客观评价指标。  相似文献   

6.
侯思祖  陈宇 《半导体光电》2019,40(3):401-406, 411
针对紫外成像仪中紫外光图像与可见光图像的灰度值特点及传统的图像融合方法在图像融合时存在紫外光斑信息丢失的问题,提出一种基于非下采样剪切波变换(NSST)和自适应稀疏表示的紫外光与可见光图像融合方法。首先用NSST变换分解源图像,得到低频子带系数和高频子带系数;然后采用邻域标准偏差取大的融合规则融合低频子带系数,生成近似融合图像;根据自适应稀疏思想指导高频子带系数的融合;最后通过逆NSST变换重构得到融合图像。实验结果表明,该方法在保留可见光背景信息的基础上,很好地融合了紫外光斑信息,改善了图像的主观视觉质量,在客观评价指标上也有所提高。  相似文献   

7.
由于红外镜头景深的限制,为获得场景中所有区域都聚焦清晰的图像,提出一种在非下采样轮廓波变换(NSCT)域结合改进的脉冲耦合神经网络(PCNN)的多聚焦红外图像的融合算法.首先通过NSCT将图像分解为不同尺度和方向的子带;低频子带图像利用基于一致性验证的特征选择规则进行融合;对于高频子带,采用改进的空域频率激励PCNN模型,选择点火时间最大的系数进行融合;最后通过NSCT反变换得到融合图像.通过多组同一场景不同聚焦位置下的红外图像融合实验,结果分析表明该算法能从源图像中获得更多的信息,更好地保留源图像的边缘信息,融合效果优于相关算法.  相似文献   

8.
高度异构的复杂背景破坏了场景的低秩性,现有算法难以利用低秩稀疏恢复方法从背景中分离出小目标。为了解决上述问题,本文将小目标检测问题转化为张量模型的凸优化函数求解问题,提出基于稀疏增强重加权与掩码块张量的检测模型。首先,将掩码块图像以堆叠方式扩展至张量空间,并构建掩码块张量模型以筛选候选目标。在此基础上,利用结构张量构建稀疏增强重加权模型以抑制背景杂波,克服凸优化函数求解过程中设定加权参数的缺陷。实验表明本文检测算法在背景抑制因子及信杂比增益两方面都优于新近代表性算法,证明该算法的有效性。  相似文献   

9.
红外和可见光图像融合广泛应用于目标跟踪、检测和识别等领域。为了保留细节的同时增强对比度,本文提出一种基于潜在低秩表示的红外和可见光图像融合方法。潜在低秩分解将源图像分解为基层和显著层,其中基层包含主要内容和结构信息,显著层包含能量相对集中的局部区域。进一步利用比例金字塔分解得到低频和高频的基层子带,并针对不同层的特点设计对应的融合规则。利用稀疏表示表达低频基层较分散的能量,设计L1范数最大和稀疏系数最大规则,加权平均融合策略保留不同的显著特征;绝对值最大增强高频基层的对比度信息;而显著层则利用局部方差度量局部显著性,加权平均方式突出对比度较强的目标区域。在TNO数据集上的定性和定量实验分析表明方法具有良好的融合性能。基于低秩分解的方法能够增强红外和可见光融合图像中目标对比度的同时保留了丰富的细节信息。  相似文献   

10.
王凡  王屹  刘洋 《信号处理》2020,36(4):572-583
红外和可见光图像融合作为图像融合技术中一个重要组成部分,被广泛应用于军事、工业和生活领域。它能够集成两种模态图像的互补信息,融合成一幅信息丰富、质量较好的图像,不仅能够突出目标信息,还能够保持源有图像的纹理信息和一些显著性的细节。本文提出一种新的红外和可见光图像融合方法,在鲁棒稀疏表示模型的基础上增加了结构化稀疏约束,同时结合了图像区域特征相似的一致性约束项,克服现有一些方法所存在的局部模糊和纹理细节丢失等问题,提高了图像融合的精度。本文主要构建了结构化稀疏表示与一致性约束模型,将其应用到红外和可见光图像融合中并进行了求解,将源图像分解为背景信息和显著性信息,再对背景和显著性信息分别设计融合规则,最后利用字典进行重构,获得红外和可见光融合后的图像。实验结果表明,本文提出的融合算法优于现有的一些多聚焦图像融合算法。   相似文献   

11.
王文卿  马笑  刘涵 《信号处理》2021,37(9):1770-1780
为进一步提高红外与可见光融合图像的细节信息和整体对比度,降低伪影和噪声,考虑了红外与可见光图像的相关性,提出了一种基于联合低秩稀疏分解的红外与可见光图像融合方法。首先,利用联合低秩稀疏分解方法将红外和可见光源图像分别分解成共同低秩分量、特有低秩分量和特有稀疏分量;其次,利用非下采样Shearlet变换方法对特有低秩分量进行融合;然后,采用区域能量融合策略实现特有稀疏分量融合;最后,共有低秩分量与融合后的特有低秩分量和特有稀疏分量相加得到最终融合图像。在Nato-camp、Bristol Eden Project和TNO公共测试数据集上进行的实验测试了所提算法性能。实验结果表明,与其他9种融合方法相比,所提方法能够有效地提取红外图像中的目标信息和保留可见光图像的背景信息,熵、互信息、标准差、视觉信息保真度、差异相关系数之和和 Qy 客观评价指标明显优于对比方法。   相似文献   

12.
针对绝缘子红外与可见光图像融合过程中存在绝缘子伞盘边缘信息模糊,亮度低和对比度差等问题,本文提出了基于联合稀疏和参数自适应选择指导滤波的图像融合方法.图像首先经过联合稀疏模型分解,提取共有特征、红外图像特有特征和可见光图像特有特征,并按照特有特征系数的活跃程度调整权重;同时应用参数自适应选择指导滤波方法,能够较好地保留绝缘子图像的边缘信息和细节信息.通过对比实验,本文方法融合结果亮度高、边缘清晰且边缘强度大,同时客观指标也较好.  相似文献   

13.
一种基于稀疏表示的红外与微光图像的融合方法   总被引:1,自引:0,他引:1  
刘存超  薛模根 《红外》2013,34(8):21-24
根据人类视觉系统及信号的过完备稀疏表示理论,提出了一种基于稀疏表示的红外与微光图像融合算法。该方法首先把图像分割成部分重叠的图像块,由正交匹配追踪算法完成图像块的稀疏分解;然后采用最大值融合准则选择融合系数并完成图像块的重构,得到融合结果图像。实验结果表明,本文算法的融合效果优于小波变换法、Laplacian塔型方法以及PCA方法等传统融合方法。  相似文献   

14.
为提高红外与可见光图像融合的效果,加快融合算法处理速度,提出了一种基于特征提取的图像融合算法。改进了数学形态学中的顶帽运算,用于提取源图像的特征图像及背景图像;设计融合规则,对特征图像及背景图像分别进行融合处理;最后重构得到融合图像。另外,对本文融合方法的参数选择进行了分析,并且设计了适用于背景图像融合的自适应加权融合规则。实验表明,该融合方法能有效获取源图像的特征信息,提供丰富的背景信息,运算速度快,易于硬件实现。  相似文献   

15.
基于NSUDCT的红外与可见光图像融合   总被引:2,自引:0,他引:2       下载免费PDF全文
针对同一场景的红外与可见光图像,提出了基于非下采样均匀离散Curvelet 变换(NSUDCT)的图像融合方法。首先使用标记控制的分水岭分割(MCWS)算法对源图像进行区域分割,对各分割结果进行叠加得到联合区域图。然后对源图像进行非下采样均匀离散Curvelet 分解,分解后的低频系数采用区域对比度和区域标准差作为量测指标进行融合,高频方向系数使用基于局部能量的融合规则进行融合,并对融合系数做一致性检测。最后通过各频带融合系数重建得到融合图像。实验结果表明文中方法取得了比较好的视觉效果和量化数据,相比基于NSUDCT 的像素融合方法,此文方法的熵值提高了9.87%,交叉熵减少了68.04%,互信息提高了80%。  相似文献   

16.
基于NSCT的红外与可见光图像融合   总被引:3,自引:0,他引:3  
针对红外与可见光图像特点,提出一种基于非下采样Contourlet变换(NSCT)的红外与可见光图像融合算法。该算法对源图像进行NSCT分解,得到低频分量和各带通方向子带分量;引入图像区域相关系数决策度,对低频分量和带通方向子带分量采用不同的融合规则进行融合;最后经过NSCT逆变换得到融合图像。实验证明,该方法可以更好地保留目标信息和图像细节信息。  相似文献   

17.
姜晓林  王志社 《红外技术》2020,42(3):272-278
传统的可见光与红外稀疏表示融合方法,采用图像块构造解析字典或者学习字典,利用字典的原子表征图像的显著特征.这类方法存在两个问题,一是没有考虑图像块与块之间的联系,二是字典的适应能力不够并且复杂度高.针对这两个问题,本文提出可见光与红外图像结构组双稀疏融合方法.该方法首先利用图像的非局部相似性,将图像块构建成图像相似结构组,然后对图像相似结构组进行字典训练,采用双稀疏分解模型,有效结合解析字典和学习字典的优势,降低了字典训练的复杂度,得到的结构字典更加灵活,适应性提高.该方法能够有效提高红外与可见光融合图像的视觉效果,经对比实验分析,在主观和客观评价上都优于传统的稀疏表示融合方法.  相似文献   

18.
针对红外与可见光图像融合中出现的边缘模糊和细节丢失等问题,本文提出了一种基于交替引导滤波器(AGF)与掩膜引导卷积神经网络(CNN)的融合算法。首先,将源图像通过交替引导滤波分解为基础层与细节层;然后,将基础层通过能量属性的融合规则得到基础融合图像,细节层在基于掩膜引导的损失函数的指导下,通过卷积神经网络得到融合后的细节图像;最后,将基础融合图像与细节融合图像相加得到最终融合图像;实验结果表明,本文方法能够在突出显著热目标的同时保留丰富的背景边缘纹理信息,在客观评价指标上相较对比方法取得了更好的效果,证明了本文算法的优越性。  相似文献   

19.
针对红外与可见光图像需要实时融合的特点,提出一种降低算法复杂度的基于非降采样剪切波变换(Non-subsampled Shearlet Transform)和压缩感知域的红外与可见光图像融合算法。利用NSST算法对红外图像和可见光图像分别进行多尺度、多方向稀疏分解,分别得到低频系数和各带通方向子带系数。对低频子带系数采用基于目标特征的加权平均融合规则;压缩感知理论的测量矩阵采用哈达马阶快速沃尔什矩阵,对细节信息保留较多的各带通子带系数进行观测测量,得到更稀疏的各带通子带系数测量值,对此测量值采用基于区域方差选大的融合规则得到融合测量值,运用基于增广的拉格朗日乘子和交叠方向恢复算法对融合测量值进行重构得到近似精确的各带通子带融合系数,最后对低频子带融合系数和各带通方向子带融合系数执行NSST逆变换得到最终的融合图像。实验结果表明,该融合方法不仅可以保证融合清晰度,同时还可以缩短算法的运行时间。  相似文献   

20.
基于DT-CWT的红外与可见光图像自适应融合   总被引:2,自引:0,他引:2  
针对低可见光图像和红外图像的特点,提出一种基于DT-CWT的自适应图像融合算法.该算法具有好的平移不变性和方向选择性,更适合于人类视觉.先对源图像作双树复小波变换,充分考虑各尺度分解层的系数特征,对低通子带引入免疫克隆选择,根据统计评价准则定义亲和度函数,自适应获得最优融合权值;对高通子带则根据人类视觉特性定义局部方向对比度,并作为融合准则,突出和增强了各源图像的对比度与细节信息.实验结果表明:与基于小波的融合结果相比较,本文的融合算法自适应性和鲁棒性更强,较好地保护和显示了源图像中的边缘和细节信息,对比度和清晰度都有所提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号