首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对LLC谐振变换器增益负载敏感性强、与效率存在强耦合的不足,提出了一种由LLC 谐振变换器和两开关buck-boost构成的宽增益高效率LLC谐振变换器拓扑。通过采用输入并联与输出串联的方式,分别由LLC谐振变换器传输功率、buck-boost调节输出电压。其中,LLC谐振变换器运行于谐振频率,buck-boost采用PWM调节输出电压。分析了变换器的运行模式,给出了相应的参数设计方法,并进行了仿真验证。最后,对输入30 V、输出200~360 V、360 W样机进行了实验,实验样机增益范围和效率分别为6.67~12、97.4%。仿真与样机实验验证了所提出的宽增益高效率LLC变换器拓扑及其调制方法的有效性。  相似文献   

2.
研究了双向LLC谐振变换器,该拓扑作为功率变换器,适用于卫星充放电调节器中。通过对该变换器的结构、原理进行分析,提出了一种同步整流控制方法和同步等宽变频控制方法相结合的策略,通过PSIM实现了双向LLC谐振变换器应用于卫星充放电调节器的仿真,双向最大输出功率为4kW,适应了卫星充放电要求的电压范围,实现了充放电模式切换、恒压恒流充电模式切换以及Taper充电模式,解决了传统LLC谐振变换器及控制方法存在的能量无法双向流动、存在循环功率、开关损耗偏大等问题。  相似文献   

3.
由于全桥和半桥LLC谐振变换器之间天然的两倍增益比,全半桥拓扑切换可以极大地拓展LLC变换器的电压增益范围,且不需要额外的元器件。然而,由于全桥和半桥模式的LLC变换器具有不同的电压增益曲线,拓扑切换前后的暂态过程会使得输出电压产生突变,甚至可能会导致系统的不稳定。为抑制拓扑切换的暂态过程,这里提出了一种基于时域分析的前馈控制方法。该策略通过时域分析计算LLC变换器当前工况的理想开关频率,将其前馈加入传统线性控制器中,以实现输出电压的快速调节。最后利用实验样机验证了所提控制策略的有效性。  相似文献   

4.
针对充电拓扑存在开关工作频率范围过宽的问题,提出了一种适用于蓄电池充电的IPOS双LLC谐振变换器,并针对其恒压恒流输出特性展开了研究。所提变换器包含两组LLC谐振腔,通过辅助开关管S的开闭改变其中一组谐振电容参数,从而实现变换器的恒压和恒流输出转换。恒压恒流模式下所提变换器均定频工作:在恒压模式(S闭合),两组谐振腔工作在LC串联谐振点处;在恒流模式(S断开),一组谐振腔工作在LLC谐振点处实现恒流输出而另一组仍恒压输出。所提变换器实现软开关的同时实现了原边开关管和副边整流二极管的复用,并详细介绍了其工作原理、电压电流增益、设计方法和控制方案。最后,通过实验和仿真验证了所提变换器的可行性。  相似文献   

5.
为了解决全桥LLC谐振变换器工作在轻载或空载时,输出电压不可控和损耗大的问题,提出了一种混合控制策略,当全桥LLC谐振变换器正常带载时采取PFM控制策略,轻载或空载时切换成PWM控制策略,提高了变换效率,稳定了输出电压,同时也降低了轻载或空载时的损耗。仿真结果表明:这种混合控制策略很好解决了LLC谐振变换器轻载或空载时输出电压不可控和损耗大的问题。  相似文献   

6.
目前多种动力蓄电池凭借着能量密度高、续航里程长和可循环使用等优势,在新能源汽车领域得到了广泛应用。针对当前以谐振电路为基础构建复合变换器应用于蓄电池充电存在输出电压范围、模式间切换、效率等不同问题,提出了一种四开关Buck-Boost与电容钳位LLC级联复用式变换器作为充电电路。该电路增益曲线的容性区和感性区均可工作,宽调频范围的容性区具有恒流特性,感性区的最佳谐振点具有恒压特性,利于实现蓄电池恒流恒压充电控制。频率与占空比的解耦控制拓宽了变换器的输出电压范围,且负载阻抗连续变化下电压增益连续,利于实现蓄电池恒流恒压平滑切换及满足不同电池充电控制方案,宽增益下的宽调控范围可减少输出纹波。拥有桥臂间移相软开关、复用桥臂增强软开关能力和降低通态电流、变压器低磁链及最终移动于最佳谐振点工作等电路特性,利于实现电能高效传输。仿真与实验结果验证了充电电路全程满足ZVS、ZCS的恒流恒压控制及充电模式间平滑切换特性。  相似文献   

7.
戴水东  夏克文 《高压电器》2019,55(12):168-174
充电机是电动汽车发展的基础设施,LLC变换器因其良好的效率特性在电动汽车充电机中有着广泛的应用,但LLC变换器对电压增益比较敏感,同时电动汽车动力电池组的电压在充电过程中,变化范围很宽,会导致等效充电效率低,充电能耗高。为了解决这个问题,论文基于锂电池的充电特性曲线,以整个充电过程消耗的能量为优化指标,提出了反映充满电池所需要的电量多少的充电机充电效率评估函数。针对宽的电压输出范围和LLC变换器转换效率对电压增益敏感的矛盾,提出了一种三段式混合控制方式,根据不同的输出电压和功率,LLC变换器工作于常规的调频模式、谐振工作模式和超谐振频率谐振模式,达到以最少的耗能充满电动汽车动力电池的效果。通过损耗计算对等效效率与分段参数之间的关系进行了比较分析,对三段式控制器进行了优化设计;最后搭建了10 kW LLC变换器实验样机进行了验证。  相似文献   

8.
氢能作为一种洁净高效的二次能源,而广泛应用于生产和生活中。电解水制氢作为产生绿色氢气的重要制备方式之一,开发高效率且稳定的制氢电源模块具有重要意义。此处根据电解水制氢的电源工作特性,首先提出一种整流并联三相LLC谐振变换器制氢电源拓扑结构,在此基础上完成了主电路参数计算及其磁性元件设计;基于三相LLC谐振变换器的小信号数学模型,完善了比例积分(PI)补偿器的设计,通过调频控制实现在宽电压和宽负载范围内开关管的软开关特性,同时完成输出电流的宽范围调节,验证了三相LLC拓扑在降低输出电流纹波方面具有较大优势,满足制氢电源模块的要求;最后,基于PLECS电力电子仿真软件完成了三相LLC谐振变换器的仿真研究,且搭建了6 kW的实验样机对变换器的性能进行了实验验证。  相似文献   

9.
LLC谐振变换器以其优异的性能被广泛应用于电动汽车直流充电领域。针对电动汽车宽输出电压范围、高转换效率的充电需求,该文对直流充电模块后级全桥LLC谐振变换器软开关运行的输出电压边界进行了分析。零电压开通(ZVS)上边界处,变压器励磁电感参与谐振,其二次侧等效峰值电压与负载电压相等,整流二极管临界导通;ZVS下边界处,谐振电流与谐振腔的输入电压同时过零,LLC谐振变换器运行于临界感性区间。该文利用时域分析法详细分析了变换器ZVS上下边界处的工作状态,计算出变换器软开关运行所允许的输出电压范围,揭示了变换器的软开关特性与工作频率、谐振参数之间的关系,为变换器的参数设计和变频控制提供了理论指导。最后,通过仿真和实验对理论分析进行了验证。  相似文献   

10.
针对LLC谐振变换器轻载及空载时,开关频率在高频段变化范围大,造成变换器中部分元件的磁集成设计困难、易引起电压失控等问题,此处基于三相交错并联LLC谐振变换器设计对称脉宽调制(PWM)控制方法。通过设计软开关的实现条件,将变换器的运行模式分为软开关和硬开关两种状态,并分别对其工作原理与运行模态进行深入分析,得到具有单调性和非单调性的增益曲线,从而找到变换器最佳运行区间,实现变换器在轻载时既能工作在软开关状态,又能有效控制输出电压。基于SiC器件研制LLC谐振变换器实验样机,验证理论分析的正确性及方案的可行性。  相似文献   

11.
针对以LLC谐振变换器为主电路的锂电池充电器开关频率变化范围较大,恒压涓流充电时调节特性差的问题,提出了以电容输出滤波的半桥LCC谐振变换器作为主电路的锂电池充电电源设计方法.分析了电容输出滤波半桥LCC谐振变换器的恒流和恒压输出特性以及恒流恒压模式的转换过程,给出了变换器精确的参数设计方法.搭建了160 W的实验样机,实验结果验证了该方法是可行的.恒流模式下,当输出电压在20~80 V变化时,变换器的工作频率变化仅有3.33%,并且通过调节工作频率,可以实现空载恒压输出.变换器的开关管能在全范围内实现软开关,最高效率94.5%.  相似文献   

12.
LLC谐振变换器有着宽输入范围,良好的软开关特性以及在谐振点降压和谐振点两侧升降压的特性,广泛应用于电动汽车,新能源以及航天系统中。本文研究了LLC 谐振变换器在电动汽车充电领域内的应用,根据电动汽车充电时的输入电压不同及充电所需电压不同,LLC谐振变换器可以在谐振点两侧及谐振点分别使用变频-移相的方式进行调节使其满足充电条件,通过对LLC谐振变换器的拓扑分析,采用了合适的调制策略和控制策略,最终使用变频+移相的控制方式让LLC变换器始终运行在电动汽车充电需求范围内,并实现了升降压以及软开关功能。最后通过Matlab/Simulink进行仿真以及实验,验证了本文研究内容的可行性。  相似文献   

13.
针对变频控制LLC谐振变换器空载输出和限流时工作特性不佳的问题,提出在输入电压范围不宽且要求电路结构简单易于限流的应用场合,使用PWM控制LLC谐振变换器以获得较好的空载调压和限流特性。阐述了不同占空比下变换器的工作原理,并从时域的角度分析了其输入输出增益特性,最后针对370~390 V输入、60 V/3.6 kW输出的供电电源,完成了样机的制作与实验,验证了变换器的软开关特性和增益特性。  相似文献   

14.
张杰  张信  刘尉  杨淋 《电源学报》2023,21(3):10-19
为了提升LLC谐振变换器的输入电压范围,提出了一种混合控制的方式来提升LLC谐振变换器电路的增益。将整个控制分为3个模式,分别为全桥模式、半桥模式以及混合模式。在混合模式下,通过PI运算得出半桥LLC谐振变换器和全桥LLC谐振变换器分配的权重,控制信号由数字信号处理器DSP28335发出,让整个电路在控制周期的一定时间内工作在全桥LLC谐振变换器模式,其余时间工作在半桥LLC谐振变换器模式。前期通过分析和仿真,能够确定控制方式的最佳控制方案,最后通过一个输入50~150 V直流、输出12 V/5 A的实验样机,验证了所提控制方式的正确性和合理性。  相似文献   

15.
在标准通信电源及电动汽车充电模块等宽范围输出电压及负载电流变化范围较大的应用场合,由于LLC谐振变换拓扑在高频区具有的不单调现象及实际应用中考虑开关频率的限制等情况,单纯的调频控制难以满足要求,常用的解决方案是在PFM控制的基础上特定条件下引入PWM控制。针对目前对PWM控制模式下LLC谐振变换器单调性分析并不多见的现状,对PWM控制LLC谐振变换器的单调性进行仿真及实验研究,分析了特定占空比下不单调现象的本质并测试了不单调占空比范围,最后根据实验结果给出了实用解决方案。  相似文献   

16.
LLC谐振变换器由于具有天然的软开关属性而备受青睐,但电压增益可调范围有限,开关频率范围过宽的缺陷限制了其应用场合。鉴于此,这里提出了一种具有模式切换功能的“I-H”型电路拓扑,并且提出了一种不对称脉宽调制(PWM)控制实现三电平,利用谐振电流周期性特性,在不额外引入开关的前提下保证电容均压。通过模式切换以及控制策略的转换,得到低、中、高3种电压增益模式,在不改变输入电压及谐振元件参数的前提下拓宽了输出电压范围。这里将其与传统的LLC拓扑进行对比,对3种电压增益分别进行了模态分析,并分析了变换器的软开关条件,为参数选取提供依据。最后搭建了一台1 500 W的实验样机验证了所提电路拓扑及混合控制策略的适应性和准确性。  相似文献   

17.
LLC谐振变换器电压控制模式通常采用误差放大器输出电压来直接控制开关频率,该控制方法使LLC谐振变换器的增益与频率之间的关系较为复杂,导致补偿网络设计相对较难,动态响应速度较慢,且大多数控制方案都未考虑集成变压器次级漏感带来的虚拟增益对谐振变换器参数设计的影响。针对以上问题,研究了基于充电电流控制的LLC谐振变换器,分析了变压器次级漏感,推导出电压增益表达式。与传统电压模式控制LLC谐振变换器相比,充电电流控制LLC谐振变换器保持了软开关特性,输入瞬态响应速度和负载动态响应速度均有较大提升,无需压控振荡器,在简化反馈回路设计的同时实现了固有前路反馈。文中详细分析了充电电流控制LLC谐振变换器的工作原理和集成变压器次级漏感的考虑事项,最后通过仿真和实验验证了理论的正确性。  相似文献   

18.
直流变换器广泛应用于电动汽车充电系统与光伏发电系统,如何适应输入/输出电压大范围变化,实现直流变换器的宽增益和高传输效率为学术界和工业界所关注。其中,LLC、LLC_LC、LLCLC谐振变换器虽具有高功率密度、低电磁干扰等特性,但存在磁元件与谐振网络参数设计难度大,造成变换器输出不稳定等不足,难以满足实际应用的要求。为此,提出了宽增益高效谐振型直流变换器技术。首先总结了谐振型直流变换器的基本原理,围绕其拓扑结构及调制策略的国内外研究进展,重点就宽增益与高效谐振型直流变换器应用需求进行阐述。然后分析了LLC_LC、LLCLC多模式PWM倍压整流变换器拓扑及调制策略。最后结合仿真与实验验证结果,证明了该宽增益高效谐振型直流变换器拓扑及其调制策略的有效性,最高可实现输出电压范围为1~6.2,转换效率达96.1%,具有较宽广的应用前景。  相似文献   

19.
介绍了一种电动汽车充电模块拓扑,该拓扑包括了前级的PWM整流器和后级的谐振变换器。由于电动汽车车载电池的电压变化范围较宽(200~450 V),为了提高全电压范围的转换效率,谐振变换器根据输出电压的变化,分别工作于3种模式:亚谐振频率调频模式、固定开关频率模式和超谐振频率调频模式。分析了3种工作模式的损耗,设计了谐振变换器的主电路参数,并在10 kW实验样机进行了验证。  相似文献   

20.
双向LLC谐振型直流变压器的软启动及功率换向控制   总被引:3,自引:0,他引:3  
双向LLC谐振型直流变压器(DCT)在保持了LLC谐振变换器高效率和高功率密度等优点的同时,具备双向传输能量的能力。通过对双向LLC谐振型DCT在变频控制和移相控制下增益特性曲线的分析,提出一种基于移相控制的软启动控制策略,使得DCT无论是空载还是满载启动,都能平稳快速地建立输出电压,有效避免了谐振网络中的电流和电压冲击。针对双向LLC谐振型DCT既可为负载供电又能接收能量回馈的工作特点,采用一种基于输出电容电压滞环控制的功率换向控制策略,可准确迅速地变换DCT的工作模式,从而顺利地改变功率流动方向。所提控制策略的可行性和有效性通过仿真和样机实验得到了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号