首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
雷电冲击耐压试验是检验GIS(Gas Instulated Switchgear,气体绝缘全封闭配电装置)设备绝缘性能的重要手段。特高压大容量GIS设备的雷电冲击试验经常遇到波头时间Tf和过冲系数?超标问题。本文依托厦门理工学院高压电力大厅的试验场地和3000kV/300kJ冲击电压发生器,以1100kV GIS设备(电容量为2500pF)为研究对象,试验中通过优化波头电阻排列、改善高压导线布置、串接阻容装置等方法,使试验波形中的波头时间Tf从最初的1.84?s降低到1.56?s,同时保证过冲系数β不超过10%。本文对特高压大容量设备雷电冲击试验具有一定借鉴意义。  相似文献   

2.
为开展特高压工程相间空气间隙的试验研究,采用7 500 kV与4 800 kV冲击电压发生器,组成特高压长波头操作波联合电压试验系统。对7 500 kV与4 800 kV冲击电压发生器产生1 000/5 000μs长波头操作波的机理、冲击电压信号同步方法进行研究,并以特高压模拟导线为试品,对该试验系统的性能进行试验研究。研究结果表明,该试验系统能产生高幅值的1 000/5 000μs长波头操作波,冲击电压分量同步较好,输出电压效率稳定,可以满足特高压工程空气间隙相间试验研究的要求。  相似文献   

3.
通过对1200 kV冲击电压发生器输出的标准雷电冲击全波波形进行理论分析计算,提出一种全新的波形调节方法,即根据两次预施加冲击电压得出试品电容,再根据试品电容计算出需要使用的装置级数、波头电阻和波尾电阻。该方法大大提高了试验效率,操作简单,实用价值高,对今后开展高压设备雷电冲击试验具有很强的指导意义。  相似文献   

4.
电力变压器在运行过程中可能遭到雷电过电压和操作过电压的作用,由于其自身电压等级、额定功率和设计布局等差异,导致入侵的电压波形通常和IEC标准有很大不同,评估其绝缘强度时有必要开展不同波形参数冲击电压下典型绝缘击穿特性试验研究。为此设计并搭建了一套基于固态开关的冲击电压发生器,通过调节回路中电容和电阻参数,可产生包括标准雷电冲击电压和标准操作冲击电压等7种不同波形参数的冲击电压。实验测试与回路仿真所得波形近似,冲击电压的波头时间和波尾时间满足标准规定允许的偏差范围。  相似文献   

5.
现场冲击耐压试验对于保障GIS设备的安全稳定运行意义重大。在现场通常采用振荡型冲击电压来考核GIS设备的绝缘性能,依托某750 kV变电站,利用数值仿真软件ATP-EMTP对800 kV超高压GIS设备在振荡型雷电冲击波作用下的电压波形和冲击电压发生器参数进行了仿真计算,结合仿真计算结果,在现场对800 kV GIS设备的某一间隔进行了冲击耐压试验以检验设备的绝缘性能,分别进行了50%正负极性额定电压(±840 kV)下的冲击试验,75%正负极性额定电压(±1 260 kV)下的冲击试验,100%正负极性额定电压(±1 680 kV)下的冲击试验,并根据波形要求进行调波。结果表明,仿真计算对现场试验具有重要的指导作用,在现场按照仿真计算得到的冲击电压发生器参数进行设定所得到的试验波形与仿真波形一致。在50%、75%、100%电压作用下设备未发现放电、击穿等现象,设备绝缘性能良好。  相似文献   

6.
介绍了一种计算冲击电压发生器回路参数的方法,对用油间隙产生陡法的方法亦进行了研究,最后给出了陡波及标准雷电波的试验结果。  相似文献   

7.
积多年研究开发的成果,逐步形成SJTU—1200kV系列、SJTU—2400kV系列和SJTU—4800kV系列成套冲击电压发生器,已向社会提供了一百多套各种类型的冲击电压发生器。这些系列冲击电压发生器主要用于产生雷电冲击电压全波、截波和操作冲击电压波对电力设备等进行冲击电压试验和其它科学试验。  相似文献   

8.
冲击电压试验系统是研究纳米复合材料电击穿性能的前提,冲击电压发生器是试验系统的核心装置.一般来说,多级超高压冲击电压发生器的放电电压高于1 000 kV,进行局部放电的小型脉冲发生器的放电电压低于10 kV,而纳米复合材料击穿电压大约在100 kV.因此,为适应高压设备投运前试验需求,研制了100 kV低储能单级冲击发生器,介绍了其工作原理.通过仿真计算,确定了冲击低压发生器主回路元件参数.经实测,该单级冲击发生器能够满足标准雷电波要求.  相似文献   

9.
7 200 kV/480 kJ冲击电压发生器的输出电压特性   总被引:3,自引:0,他引:3  
介绍了国家电网公司特高压直流试验基地户外冲击试验场的7 200 kV/480 kJ冲击电压发生器的结构特点,并对该冲击电压发生器的雷电冲击电压、标准操作冲击电压、500 ms 和1 000 ms长波头操作冲击电压的输出特性进行了试验研究。试验结果表明:雷电冲击输出电压幅值达到了6 271 kV,标准操作冲击电压的棒板间隙耐受电压和击穿电压分别达到了3 844和4 845 kV。表明该冲击电压发生器可以满足±800 kV特高压直流输电技术和更高电压等级输电技术的试验要求。  相似文献   

10.
冲击电压测量软件的计算准确度直接影响冲击电压测量系统的测量水平,介绍了IEC标准对于叠加过冲振荡的雷电全波的计算方法的发展改进过程,简述了自主开发的冲击测量软件的基本功能以及关键问题的解决方法,并采用IEC61083-2-2010的标准试验数据发生器(TDG)验证了软件的计算准确度。软件对雷电全波(LI)29个典型波形的计算结果,其主要波形参数:峰值Up、波前时间T1、半峰值时间T2、部分相对过冲幅值β与标准值的最大偏差值分别为-0.07%、1.5%、-0.17%、1.0%,各参数的计算偏差都小于标准规定的最大允许偏差值;另外对波形雷电截波(LIC)、冲击电流波形(IC)和操作冲击全波(SI)的典型波形进行计算,得出本软件可用于计算冲击电压/电流各种波形的结论。将本软件与研究所研发的冲击测量软件就主要测量参数进行了计算结果的比较,结果显示其软件除了计算过冲时存在几个极大偏差,也基本满足IEC标准的规定,证明本软件采集数据的计算水平达到了先进水平。  相似文献   

11.
换流变压器进行雷电冲击耐压试验研究周期长、代价高,而利用缩比模型进行试验研究具有良好的经济性,且利于试验数据的获取,并可与仿真结果进行对比分析。为设计与原模型电气特性一致的缩比模型,本文推导了雷电冲击下变压器的缩比公式,设计了缩比模型,对缩比模型和原模型在相似激励下的电场和磁场分布进行了仿真对比,并利用多导体传输线模型计算了缩比模型与原模型在雷电冲击下的绕组电压波形,原模型与缩比模型误差在5%以内。对缩比模型进行了绕组分布电压测量,结果表明,引出线结构会影响绕组电气特性,需进一步研究修正方法。  相似文献   

12.
为了满足飞机外场整机雷电试验要求,研制了一套雷电流波形发生器系统,可产生幅值为10kA的雷电间接效应A波。发生器采用恒流充电方法对电容进行充电,通过分析电容充电过程,采用合适的控制方法以缩短电容充电时间和提高电压控制精度。为了得到所需参数的雷电流波形,通过仿真得到了发生器放电电路元件参数,并通过试验调试波形参数达到要求。通过编写计算机控制软件,实现了发生器的自动化控制和远程操作。试验结果表明,该波形发生器系统操作简单、工作可靠,各项指标能够达到试验要求。  相似文献   

13.
导线雷电冲击电晕特性试验研究   总被引:1,自引:0,他引:1  
雷电侵入波的特性对变电站内设备的绝缘裕度设计有较大的影响,而目前中国进行变电站设备雷电绝缘裕度设计中,忽略了输电线路的电晕会引起雷电侵入波衰减畸变,导致设计结果通常较为保守,因此有必要对雷电冲击电晕进行系统研究。在中国特高压交流试验基地开展了冲击电晕试验,对输电线路中常用的导线进行了雷电冲击电晕试验研究,总结了不同导线的雷电冲击电晕伏库特性曲线。试验结果表明:在雷电冲击下导线起晕较为明显,不同导线的伏库特性曲线表现出一定的规律性,且在正极性雷电冲击下导线表现出明显的起晕延时现象。基于试验结果可建立相应的线路冲击电晕模型,应用于电磁暂态软件中仿真计算线路冲击电晕对线路雷电侵入波的影响。  相似文献   

14.
1000 kV特高压电力变压器绝缘水平及试验技术   总被引:5,自引:0,他引:5  
中国1 000 kV交流特高压系统绝缘配合不是对 500 kV系统的简单放大,也并未完全依照GB311.1-1997或IEC60071-1-1993标准,是在优化原则下研究确定的。变压器绝缘水平为:雷电冲击耐压2 250 kV、操作冲击耐压 1 800 kV、工频耐压1 100 kV(5 min)。由于特高压变压器各绕组绝缘水平及绝缘试验电压要求不同,而变压器各绕组是通过电磁耦合紧密联系的,工频和操作冲击试验电压在各绕组间按变比传递,因此势必造成有些线端绝缘设计不能按其技术规范所规定的试验电压来考核。此外,特高压电力变压器电压高、容量大、尺寸超大,试验回路尺寸也相应扩大,杂散电感、电容影响也更加突出。这将造成雷电冲击试验电压波形的波头时间拉长,而设计计算一般按照标准波头进行。因此,在特高压变压器绝缘设计中,应关注长波头试验电压的影响。文中详细介绍了中国1 000 kV交流特高压工程用电力变压器的结构特点、绝缘水平及绝缘试验中的特殊问题。  相似文献   

15.
特高压同塔双回交流线路的外绝缘特性   总被引:1,自引:1,他引:0  
为确保线路运行安全,针对我国第1条1000kV交流特高压同塔双回线路特点,采用真型杆塔进行了工频电压、不同波前时间操作冲击和雷电冲击电压的放电特性试验;并利用污秽试验大厅开展了长串绝缘子的污耐压特性试验研究,获得了多条重要的放电特性曲线及长串绝缘子污耐压曲线。根据真型杆塔空气间隙试验结果及过电压计算结论,提出了1000kV交流特高压同塔双回线路杆塔最小安全间隙建议值,依据长串绝缘子污耐压试验结果,推荐了线路绝缘子配置参数。  相似文献   

16.
高压直流电缆是柔性直流输电技术的关键装备,直流电缆的绝缘厚度设计以雷电冲击电压安全裕度为重要依据。为了获得直流电缆的安全裕度,文中提出了直流电缆雷电冲击电压安全裕度试验方法,建立了相应的试验回路,对冲击电压波形参数进行了计算、仿真和验证,获得了波前时间为1~5μs、半峰值时间为40~60μs的冲击电压波形;提出了直流电缆雷电冲击电压安全裕度的分析方法,计算了电缆绝缘的电场分布。研究表明,文中所提方法可以获得直流电缆的雷电冲击电压安全裕度,为高压直流电缆绝缘厚度设计提供了依据。  相似文献   

17.
保护性触发是特高压直流(UHVDC)换流阀的一项重要保护功能,对单阀绝缘试验中的操作冲击耐受试验有重要影响,进行该试验对电压测量准确性要求较高。进行某型号特高压换流阀保护性触发试验时,在测量设备采集到的试验电压峰值未达到设计的阀保护性触发动作门槛时发生了整阀触发导通,初步分析认为是阀塔动作正确,但测量设备与换流阀之间存在杂散电容导致试验电压的测量不准确。采用ANSYS仿真软件计算出试验回路中各主设备间的杂散电容矩阵,根据杂散电容和试验回路参数建立了PSCAD仿真模型,仿真得到了分压器测量值和阀实际承受电压值,复现了试验问题;通过理论计算分析优化试验方案,并进行了试验验证。结果表明:分压器、冲击发生器和换流阀之间的杂散电容对电压测量结果影响明显;根据ANSYS计算出杂散电容,根据杂散电容和试验回路参数建立PSCAD仿真模型,仿真结果与试验现象一致;通过试验方法的优化,电压测量偏差系数将由97.5%提高至99.2%,优化效果明显。  相似文献   

18.
特高压GIS设备进行现场冲击耐压试验时,GIS内部在振荡冲击电压波作用下易发生电磁波折、反射,由此产生的电压波叠加后可能会高于标准要求的试验电压值从而危及GIS设备绝缘。为有效评估振荡冲击电压下GIS设备内部的过电压水平,优化GIS现场冲击电压试验方法。利用EMTP仿真计算软件,基于现场实际试验参数对GIS正常施加冲击耐压以及GIS发生闪络两种工况下的波过程开展了仿真计算分析,得到了GIS设备各节点的电压分布。结果表明,正常情况下对GIS施加振荡型冲击电压时,GIS各节点电压幅值差异较小,一旦发生内部闪络后,在截断电压波作用下,GIS支路末端电压会远超试验电压值进而引发二次闪络。针对该现象,根据仿真计算结果提出在试验回路中加入阻尼电阻的抑制措施,并结合现场实测进行验证。通过对仿真计算及现场实测结果的对比分析,大幅减少了现场冲击耐压试验次数,有效防止现场试验时过电压对GIS设备的损害,为今后开展1 100 k V GIS设备现场冲击电压试验提供了技术依据。  相似文献   

19.
以IEC60060-3标准为基础,针对变压器感应式振荡型操作冲击电压的产生方法进行研究。在理论上分析了用变压器产生振荡型操作冲击电压的产生方法,列出了回路中元件参数的计算公式。根据公式计算的波头时间、波尾时间和频率值得到元件参数,计算机仿真结果表明所产生的波形符合IEC60060-3标准的规定,且计算公式能够准确地反映回路元件参数值与波形参数之间的关系。在仿真的基础上,在实验室采用哈弗莱RSG481冲击电压发生器对一台单相双绕组110kV变压器低压侧进行输入,在其高压侧产生感应式振荡型操作冲击电压,试验结果表明采用该方法可方便迅速、高效地在被试变压器高压侧产生符合IEC60060-3标准的振荡型操作冲击电压。  相似文献   

20.
特高压变压器雷电冲击伏秒特性研究   总被引:1,自引:0,他引:1  
随着750 kV、1000 kV输电技术的发展,相应的电力变压器和并联电抗器的容量、尺寸和入口电容随之增大,试验回路尺寸亦相应扩大,这使雷电冲击试验电压的波前时间拉长,无法达到国内外标准的要求。根据500 kV、750 kV和1000 kV变压器和电抗器的实际雷电冲击试验波形,结合油纸复合绝缘结构的雷电伏秒特性,分析了不同波前时间对特高压变压器和电抗器绝缘水平的影响。目前变压器的设计计算和试验电压的选取一般按照标准波头进行,而充油设备的雷电冲击伏秒特性表明,雷电冲击试验电压波前时间的长短与绝缘强度有密切关系,波前时间延长可能会对某些纵绝缘的考核偏松,同时对主绝缘的考核偏严。因此,应在特高压变压器、电抗器的设计研制和试验中,考虑和重视雷电冲击波形波前时间延长所带来的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号