首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对直流微电网暂态条件下的直流母线电压波动问题,提出一种基于储能单元的波动抑制方法。首先分析了直流母线电压波动原理;在此基础上,对系统中储能单元的控制算法进行了改进:在已有控制环节的基础上引入跟踪微分器(TD),利用直流母线电压信号,实现对系统暂态不平衡功率的跟踪和补偿,达到抑制母线电压波动的目的;以超级电容(SC)储能单元为对象,通过硬件实验,在不同系统运行模式和不同负荷类型条件下验证了所提方法的控制效果。  相似文献   

2.
直流微电网储能系统自动充放电改进控制策略   总被引:2,自引:0,他引:2  
针对直流微电网中直流微电源输出不稳定造成的网内功率不平衡及直流母线电压大范围波动问题,基于含光伏阵列和储能系统的直流微电网系统,提出了一种储能系统自动充放电改进控制策略。该控制策略将直流母线电压用4个电压临界值分成5个区域,控制系统根据直流母线电压所处区域自动判断储能系统的工作模态和模态切换,实现储能系统在充电、放电及空闲模式间自由切换;同时避免了由于直流母线电压正常波动引起的储能系统充放电频繁切换对蓄电池造成的损害。dSPACE实验验证了该策略的可行性。  相似文献   

3.
针对直流微电网中微电源功率输出不稳定以及负荷波动导致直流母线电压偏移问题,提出一种含超级电容和蓄电池的混合储能系统充放电控制策略。该控制策略将储能系统分为5种工作模式,控制系统根据直流母线电压值选择混合储能系统的工作模式,实现蓄电池与超级电容在充电、放电及空闲模式间自由切换,从而维持直流母线电压稳定。通过Matlab/Simulink软件搭建系统模型,仿真结果表明,采用该控制策略可使直流母线电压保持在电压偏移允许范围内。  相似文献   

4.
针对微电网中功率波动所造成的直流母线电压和功率不平衡问题,本文提出了一种保证微电网中微电源、负载和混合储能系统协调统一的电池逆变器控制策略。文中以包含混合储能系统的直流微电网为研究对象,根据微电网各模块之间的功率流,总结出微电网的4种工作模式,并在Matlab/Simulink平台对微电网在各种工作模式下的动态特性进行了仿真分析。仿真结果表明,所提出的策略在保证微电网不同工作模式之间平稳过渡的基础上,能够更好地平抑系统功率波动,稳定直流母线电压。  相似文献   

5.
为抑制直流微电网母线电压波动,保障直流微电网稳定安全运行,提出一种混合储能系统惯性控制策略, 实现控制混合储能系统产生虚拟惯性来更好地维持直流母线电压稳定.该控制策略采用下垂控制和虚拟直流发电机控 制共同构成混合储能惯性控制策略,使得 DC/DC变换器不仅保有下垂特性还具有惯性特性.在 MATLAB/Simulink 平台上进行仿真试验,仿真试验结果表明通过下垂+虚拟直流发电机的惯性控制方法,实现了直流微电网中各模块按 下垂系数进行功率分配的同时,混合储能系统能更好地响应直流母线上的功率波动,大幅度减小母线电压波动,并平 滑蓄电池的功率输出,延长蓄电池的使用寿命。  相似文献   

6.
考虑到由蓄电池和超级电容组成的混合储能系统有利于稳定微电网直流母线电压和优化充放电过程,提出了一种基于直流母线电压稳定的混合储能系统充放电控制策略。该控制策略以直流母线电压稳定为控制目标,实现混合储能系统外部功率平衡,结合超级电容的快充能力和蓄电池的续充能力,以超级电容电压和蓄电池的荷电状态为判断条件,实现混合储能系统内部功率平衡。在Matlab/Simulink环境构建孤岛模式下微电网混合储能系统模型,分析了微电网混合储能系统在负荷功率波动时的运行特性,仿真结果验证了该控制策略在稳定直流母线电压同时降低了蓄电池的充放电次数。  相似文献   

7.
随着光伏发电和直流微电网的发展,以光伏电池作为主要电能来源的直流微电网将会有更多的研究应用, 然而光照强度和温度等变化使得光伏电池输出功率波动,这将引起直流母线电压剧烈波动,威胁直流微电网的安全稳定运行.针对光伏输出功率导致的母线电压波动问题,提出基于聚类经验模态分解 (EnsembleEmpiricalModeDecomposition,EEMD)进行频率分配的混合储能系统控制策略,将光伏原始输出功率中的高频分量作为超级电容响应的指令功率,提升了混合储能对电压波动的抑制效果,维持直流母线电压稳定.仿真试验结果表明,所提方法能够发挥超级电容响应速度快的优势,使超级电容响应高频波动功率,平抑直流母线电压波动,同时减少蓄电池充放电次数,延长蓄电池的使用寿命。  相似文献   

8.
《高压电器》2016,(9):121-126
根据直流微电网的结构以及运行特点,分析了直流微电网中分布式发电单元和混合储能单元的控制策略。针对直流微电网中由于分布式发电单元输出功率的不稳定以及负载突变造成的直流母线电压波动问题,提出了一种基于直流微电源模块和混合储能模块的协同能量管理策略。该控制策略以直流母线电压为信号对混合储能模块的充放电模式进行控制。同时也搭建了含光伏微源单元和混合储能单元的仿真模型,通过MATLAB/Simulik仿真软件对混合储能的能流切换模式进行仿真,结果表明该策略在负荷波动或者光伏单元输出功率不稳定情况下直流母线电压的相对稳定性,验证了该策略的正确性和可行性。  相似文献   

9.
利用移相全桥变换器设计直流微电网中的储能单元,并采用蓄电池作为储能设备。首先介绍了直流微电网的结构和基于母线电压信息的系统运行模式切换方法。在分析移相全桥变换器单侧移相和双侧移相工作原理的基础上,分别设计了储能单元恒压下垂模式和恒流模式的控制策略。结合直流微电网运行模式和储能单元控制策略,进一步提出了基于母线电压信息和微电网中心控制器指令相结合的储能单元运行模式切换方案。搭建了相关实验平台,所设计的储能单元可按照母线电压信息和电流指令在恒压与恒流模式之间进行切换,实验结果验证了所提储能单元控制策略与运行模式切换方案的有效性。  相似文献   

10.
为使直流微电网具备一定的故障穿越能力,考虑增强系统对直流母线电压的调节能力,提出了基于电池储能的故障穿越方案。引入基于非线性扰动观测的前馈项,设计了基于储能单元改进下垂控制的直流微电网故障穿越控制策略。这种控制策略可以有效抑制直流母线电压波动,缩短电压调节时间,使直流母线电压保持在安全运行范围内,从而实现直流微电网在直流支路短路故障下的故障穿越。最后在Simulink中搭建有高渗透率光伏发电的直流微电网仿真模型,对所提出的方案和所设计的故障穿越控制策略进行验证。  相似文献   

11.
大量的电力电子装置接入直流微电网中,降低了系统的惯性,因此需要设计微网内功率的控制策略,以保证母线电压不发生严重波动甚至崩溃。提出了一种基于光伏、储能、联网单元的并网式直流微电网协调控制策略。以母线的简化电路为基础,分析了直流母线电压与功率平衡的关系;划分系统的4种工作模式和运行状态,据此对母线电压进行分层,并设计了基于对等控制策略的联网变流器、储能单元和光伏控制方案。仿真结果表明,该控制策略能够在微电网内出现功率不平衡时,将母线电压波动控制在额定电压的±10%以内,且下垂控制使相关设备具有即插即用的功能,实现了设备层和系统层在无通信条件下的协调配合。  相似文献   

12.
为了确保配网故障时直流微电网群的稳定运行,本文根据子微网的运行工况,将微网划分不同的运行模式,提出一种基于储能自适应下垂控制的协调控制策略来确保母线电压稳定。该策略通过微网中央控制器实时检测公共直流母线电压波动控制各子微网间并联或独立运行,从而来维持各子微网直流母线电压稳定。同时,采用自适应下垂控制协调并联运行的子微网中储能单元根据各自荷电状态和最大输出能力自动分配负荷功率。利用MATLAB/Simulink搭建直流微电网群仿真模型,仿真结果表明该策略可协调直流微电网群母线电压稳定并可自动分配不同储能单元之间的负荷功率。  相似文献   

13.
提出一种基于多组储能动态调节的直流微电网电压稳定控制策略。由于新能源具有波动性并为了提高储能系统的供电可靠性,选择配置一定控制系统的多组储能来控制母线电压稳定。为了避免储能单元过充和过放并降低对通讯的依赖程度,根据储能单元荷电状态(SOC)及最大功率、直流母线电压设计自适应下垂控制自动调节不同储能单元之间的负荷功率分配。此外,设计前馈补偿控制器对下垂控制功率环参考电压进行动态校正以控制母线电压稳定。同时,该控制策略依据直流母线电压自动切换不同变流器工作状态,确保各工况下均有变流器控制直流电压稳定及系统源荷功率平衡。最后,利用Matlab/Simulink搭建仿真模型,结果表明所提出的直流微电网电压稳定控制策略可控制直流微电网稳定运行,各储能单元之间负荷功率可自适应动态分配,并减小了母线电压波动。  相似文献   

14.
直流微电网中的分布式电源和负荷的功率双波动特性会导致直流母线电压变化,影响微电网的稳定运行。而电动汽车具有灵活的移动储能特性,可作为常规储能设备的补充,有效改善电压质量。为此,首先结合车和电池的运行特性,对电动汽车进行建模。其次,基于此模型,提出一种兼顾用户侧和微电网侧的电动汽车充放电控制策略。通过设定电池荷电状态滞环区间和直流微电网母线电压波动阈值范围,在满足用户用车需求的前提下,最大限度发挥电动汽车的储能特性,稳定直流母线电压。最后,通过仿真验证了所提出的电动汽车模型和充放电控制策略的有效性与可行性。  相似文献   

15.
针对直流微电网电压等级的选择与确定,在已有直流标准和直流工程电压等级基础上,考虑微电网容量和供电半径,进行运行损耗计算,从而选择最优的直流母线电压等级。针对直流微电网电压稳定控制,并网运行时采用储能DC/DC变流器控制直流母线电压稳定,AC/DC逆变器控制直流微电网并网功率。孤岛运行时采用储能DC/DC变流器控制直流母线电压稳定。在PSCAD/EMTDC中搭建直流微电网仿真模型,进行不同运行模式下的电压稳定控制策略仿真验证。结果表明,所采用的电压稳定控制策略,在光伏发电功率和负荷功率波动的情况下,能很好地控制直流微电网电压稳定。  相似文献   

16.
针对独立运行的直流微电网,提出基于多组储能系统动态调节的协调控制策略。孤岛运行模式下,分布式电源采用最大功率点跟踪(MPPT)控制,并选择配置多组储能来维持母线电压稳定。通过设计带有电压前馈补偿的模糊下垂控制动态调整负荷功率分配,实现不同储能单元荷电状态(SOC)的快速均衡,保证多组储能单元之间的协调运行,并可减小母线电压波动。当储能系统因满充等原因退出运行后,分布式电源由MPPT控制切换为下垂控制,并根据自身的最大功率自动调整负荷功率分配,确保重要负荷正常供电和微电网的安全运行。同时,在分布式电源下垂控制器的功率环节增加前馈补偿控制,减小该模式下母线电压波动。利用MATLAB/Simulink搭建仿真模型,仿真结果表明所提的控制策略可有效减小电压波动并能实现独立直流微电网稳定运行。  相似文献   

17.
随着分布式电源大量接入直流微电网以及微电网中负荷的波动,二者会给直流微电网母线电压带来一定的波动。因此,将混合储能接入到直流微电网中,通过光伏单元与混合单元协同作用来抑制母线电压的波动,并依据各电源的特性提出各自控制策略,使各个电源之间协同工作,实现能量最优分配,提高直流微电网的可靠性。最后通过MATLAB/Simulink仿真验证策略的有效性和可行性。  相似文献   

18.
直流微电网中分布式微源或负荷改变、线路短路,均会引起直流母线电压波动,储能单元的快速响应对于提高直流微电网稳定性至关重要,据此该文针对直流微电网储能变换器,提出一种基于节点源荷差分电流的控制策略.通过计算直流微电网源荷功率差额,确定储能交互功率,并计算储能调节电流,进而调节储能变换器占空比.相较有限集模型预测控制,省去...  相似文献   

19.
为了合理使用不同类型的松弛终端调节直流微电网母线电压波动,提出了一种针对直流微电网中混合松弛终端的分层控制策略。基于锂电池存在最佳充放电循环深度、超级电容动态响应快和上级直流主母线功率大等特性,文中将超级电容作为缓冲单元,采用双锂电池为主要的能量单元(A、B),并用上级主母线作为后背支撑,构成完备的混合型松弛终端架构。通过分析,超级电容电压控制电池出力,在微电网系统处于动态平衡时,超级电容电压可以间接表征出直流母线电压波动的低频分量。因此文中利用超级电容电压来确定双锂电池出力,根据超级电容电压信号进行层级划分并设计四种工作模式,使各松弛终端得到能量的高效分配。实验结果验证了该控制策略的有效性。  相似文献   

20.
母线电压恒定是直流微电网正常运行的关键。针对直流微电网下垂调压方式不能实现无差调节,双闭环调压方式不能实现各微源根据自身容量灵活调节出力、效率低的问题,整合两种调压方式设计了直流微电网二次调压系统。当微电网功率不平衡导致母线电压偏离额定值时,首先由下垂调压系统进行一次调压,将直流母线电压调节至稳定工作区;然后根据微网工作模式,孤岛模式下由钒电池(Vanadium Redox Battery,VRB)系统与锂电池储能系统配合进行二次调压,并网模式下由钒电池系统与并网变换器配合进行二次调压,将母线电压进一步调节至额定值;此时,若微网再次出现较大功率波动,系统重新回到一次下垂调压,重复上述过程。一次调压、二次调压协调配合,灵活切换,实现母线电压高效调节。该调压系统在保留下垂控制高效、灵活优点的同时,能够实现母线电压无差调节,提高了微网运行效率。仿真及实验验证了所提出调压系统的有效性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号