首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new circuit topology using a current‐mode low‐pass filter for sinusoids has been presented. The technique is relatively simple, in the proposed circuit, only three identical current‐mode low‐pass filters are connected to each other to realize the small signal path. No external passive components are required except for three capacitors. When compared with LC oscillators, the die area of this work, without inductors, is much smaller. When compared with voltage‐mode ring oscillators, the supply voltage of this work is much lower. As a particular example, a 2.4 GHz, 1.2‐V power supply, 5‐mW sinusoidal oscillator is demonstrated. The oscillation frequency is tuned by the value of that three capacitors, over ~900 MHz, and the tuning range is 37.5%. The phase noise results in ?94 and ?120 dBc/Hz at 1 and 10 MHz from the carrier, respectively. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

2.
An effective technique to improve the stop‐band frequency response of direct‐coupled resonators in substrate‐integrated waveguide (SIW) technology is introduced. Regular inductive‐iris filters in SIW technology are supplemented with H‐plane frequency‐dependent inverters which not only create transmission zeros but also serve as the proper impedance inverter. A synthesis technique is introduced to prescribe transmission zeros at finite frequencies on either side of the pass band, symmetrically or asymmetrically. Two different topologies of frequency‐dependent inverters for X‐band SIW band pass filters demonstrate that attenuation poles can be created on both side of the passband and significantly improve the filters' stop‐band performences. Measurements confirm the validity of the presented design approach. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:237–242, 2014.  相似文献   

3.
A method is presented for extracting the coupling matrix (CM) and the unloaded Q from the measured (or electromagnetic simulated) scattering parameters of a lossy coupled resonators bandpass filter. The method can be used for computer‐aided tuning of a microwave filter. The method consists of two elements: 1) a three‐parameter optimization method is proposed to obtain the unloaded Q (assuming all the resonators with the same unloaded Q) and to remove the phase shift of the measured S‐parameters caused by the phase loading and the transmission lines at the input/output ports of a filter; 2) the Cauchy method is used for determining characteristic polynomial models of the S‐parameters of a microwave filter in the normalized low‐pass frequency domain. Once the characteristic polynomials of the S‐parameters without phase‐shift effects are determined, the CM of a filter with a given topology can be extracted using well‐established techniques. Three diagnosis examples illustrate the validity of the proposed method. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

4.
A compact, band‐pass filter utilizing multi‐element resonators, structured from sections of distributed transmission lines, is presented. A band‐pass filter design procedure is established that emphasizes CAD techniques to characterize the individual resonators and to determine the resonator coupling values required for a specified pass‐band response. Detailed band‐pass filter design examples are illustrated and simulation results are employed to validate the design procedure. © 2003 Wiley Periodicals, Inc. Int J RF and Microwave CAE 13, 447–458, 2003.  相似文献   

5.
A millimeter‐wave ultrawideband two‐way switch filter module is presented in this article. The switch filter module covers whole Ka‐band (26–40 GHz), and is composed of two wideband band‐pass filters and two monolithic microwave integrated circuit (MMIC) single pole two throw (SP2T) switches. One filter is realized using E‐plane iris waveguide band‐pass filter, and another is realized by a novel 11‐pole three‐line microstrip structure band‐pass filter. Compared with the traditional three‐line filter, the proposed three‐line filter not only retains virtues of the traditional three‐line filter, but also resolves drawbacks of it, which include discontinuities between adjacent sections, many parameters of design, and no effective matching circuits at input/output ports. The developed switch filter module is fabricated using hybrid integrated technology, which has a size of 51 × 26 × 9.8 mm3, and interconnections between MMICs and microstrip are established by bond wires. The fabricated switch filter module exhibits excellent performances: for two different states, the measured insertion loss and return loss are all better than 7 and 10 dB in each pass‐band, respectively. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:305–310, 2015.  相似文献   

6.
A novel band‐stop filter with single‐loop split ring resonators (SRRs) is proposed for spoof surface plasmon polaritons (SPPs) at millimeter wave frequencies, achieving a miniaturized size of 0.052λ0 × 0.278λ0 at its resonant frequency. The SRRs provide both a low‐pass response as the rectangular corrugations used in the conventional SPPs and an additional band‐stop response induced by the resonance of SRRs. To verify this design, a back‐to‐back device with two coplanar waveguides as the input and output feeding was fabricated and characterized, the measured S‐parameters of which agree well with the simulation. The measured stop band is centered at 49 GHz with a ?10‐dB bandwidth of 4.1 GHz and a high Q‐factor of 93, in which the maximum attenuation is 31 dB. The filter has a low insertion loss of less than 2.8 dB in the pass band. Such approaches may find many applications to achieve compact millimeter wave circuits.  相似文献   

7.
In this article, a novel single negative metamaterial (MTM) transmission line (TL) consisting of a Hilbert‐shaped complementary ring resonator (H‐CRR) on the ground plane is initially presented and studied in depth. Then based on the proposed MTM TL, a novel six‐section Hi‐Lo microstrip low‐pass filter (LPF) with a cut‐off frequency 2.5 GHz is developed, fabricated, and measured. Measurement results indicate that: by integrating H‐CRR, the selectivity has been significantly improved which is 77.3 dB/GHz due to the single negative permittivity; by etching a crown square on low‐impedance section, the bandwidth characterized by 20 dB return loss was obviously enhanced by 26.2% and the maximal sidelobe level of in‐band return loss was reduced from 22 to 24.6 dB. What' more, the developed LPF achieved a 36.3% size reduction with respect to its conventional counterpart. The design concept, which was confirmed by the measurement data, is of practical value and can be popularized in other microwave devices where high selectivity is requested. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

8.
In this article, a compact, semi‐lumped and high power low‐pass filter in VHF band frequency is designed, fabricated, and measured. A semi‐lumped structure is used to decrease the size of the filter and improve its power handling. In high power analysis, all effects of critical points in distributed and lumped structures are considered. The experimental measurements show close agreement with the simulation results. This filter has a cut off frequency at 180 MHz, 0.02 dB ripples in pass band, return loss better than 21 dB in the pass band, 0.2 dB insertion losses, 1.6 dB/MHz shape factor, a 75% miniaturization against conventional structures with distributed elements, and wide out of band rejection. Moreover, 10 and 1 KW are the peak power and the average power handling of the filter. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:605–614, 2014.  相似文献   

9.
A coupled‐line band‐pass filter (BPF) with T‐shaped stub structure is presented. Five transmission poles within the passband and eight deep transmission zeros (TZs) from 0 to 2f0 (f0 denotes filter's center frequency) are realized through input impedance calculations. With the simple T‐shaped structure, the positions of six TZs can be appropriately adjusted to achieve high frequency selectivity and stopband rejection. For demonstration, a BPF prototype centered at 2.05 GHz is designed and fabricated, whose measured rejection levels are of over 45.5 dB at lower stopband and better than 19.5 dB at upper stopband. The simulation and measurement results are in good agreement, which validates the design idea.  相似文献   

10.
In this article, a novel compact band‐pass filter (BPF) with sharp cutoffs and a wide stop‐band is presented. The BPF is basically designed by cutting a modified complementary split‐ring resonator (CSRR) from the ground of two separated microstrip feed lines and has a 71% fractional bandwidth from 4.1 to 9 GHz. Because of the high insertion loss, the designed filter should be packed in a metallic cavity that has undesirable resonances in the stop‐band of the BPF. For eliminating cavity resonances, an evolutionary optimization technique based on changing the pixels of the CSRR defected ground structure is used. A prototype of the final structure obtained from the optimization technique is fabricated. The measurement results show that the optimized filter have a pass band from 4 to 8 GHz with a rejection better than 15 dB from 4 to 15 GHz. The designed filters have compact dimensions of 12 × 12 × 0.787 mm3. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:544–548, 2014.  相似文献   

11.
This article presents the design, simulation, fabrication, and testing of a compact two‐port microwave resonator coated with nanomaterials for ethanol gas sensing applications. The proposed gas sensor consists of a transmission line loaded with three triangular split ring resonators for ethanol detection at three frequency bands viz. 2.2, 4.6, and 6.3 GHz. The transmission line has all‐pass characteristics in which band gaps are introduced using three split ring resonators. The TiO2 and ZnO nanorods are used as sensitive layers for the proposed sensing application. The nanorods, which are grown on a glass substrate of thickness 1 mm, are loaded on to the two‐port microwave resonator making the device sensitive to ethanol. The microwave behavior of the sensor is analyzed using the scattering parameters. The absorption of the ethanol gas causes frequency detuning which is used to analyze the presence of ethanol and its concentration. From the experiments, it is understood that there is an increase in the frequency shift with an increase in the concentration of ethanol gas. The sensing device with ZnO as a sensitive layer showed a higher average sensitivity of 2.35 compared to TiO2 whose average sensitivity is 1.29.  相似文献   

12.
This article proposes a microstrip dual‐band bandpass filter that uses parallel‐connected open‐loop ring resonators. Compared to many microstrip dual‐band filters, the advantages of using microstrip open‐loop ring resonators are easy calculation (half‐guided‐wavelength), easy fabrication (equal width for all 50‐Ω lines and without grounding holes), and direct connection to external feed lines (reducing insertion loss caused by gap couplings). Another advantage of the filter is an asymmetrical feed on the ring resonator that provides sharp rejections at its adjacent bands. The input and output matches of resonators to the external feed lines are derived using a simple transmission‐line theory. The results of the derivation provide a simple design rule for filter designers. Simulated and measured results are presented with good agreement. The filter has minimum insertion loss of 1.25 dB at 1.85 GHz and 1.6 dB at 2.33 GHz. The 3‐dB fractional bandwidths are 5.9% for the 1.9‐GHz bandpass filter and 4.7% for the 2.4‐GHz bandpass filter, respectively. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

13.
A pair of dual mode independent controllable resonators used to realize dual band pass filter with good frequency selectivity and isolation is presented. The resonators are directly connected to input/output and are coupled through electric and magnetic coupling in two different paths. Magnetic coupling between the resonators is achieved using a common grounded via‐hole between the two set of quarter‐wavelength resonators. Electric coupling is achieved through open edge coupling of the resonators. Two independent resonators with Separate Electric and Magnetic Coupling (SEMC) paths produce an independently controllable dual band filter response and also additional transmission zeros (TZs) at the edges of the pass bands. The TZs are introduced to improve the selectivity of the filter. Filter exhibits desired pass band response at the Universal Mobile Telecommunications System (UMTS) band (1.95‐2.2 GHz) and Worldwide Interoperability for Microwave Access (WiMAX) band (3.4‐3.6 GHz). Proposed compact filter is implemented on RT/Duroid 5880 (εr = 2.2) substrate with thickness of 0.785 mm and surface area of 15 × 12 sq. mm.  相似文献   

14.
A compact substrate integrated waveguide (SIW) with open complementary split‐ring resonators (OCSRRs) loaded on the waveguide surface is proposed. The OCSRRs can be interpreted in terms of electric dipoles and they are good candidates to behave as electric scatterers. By loading OCSRRs on the waveguide surface, a forward‐wave pass‐band propagating below the waveguide cutoff frequency is generated. The resonance frequency of the OCSRRs is approximately half of the resonance frequency of the complementary split ring resonator (CSRR). Therefore, the electrical size of this particle is larger than the CSRRs and the OCSRRs are more appropriate for the SIW miniaturization. A bandpass response with a sharp rejection frequency band is obtained by properly manipulating the structure of the elements. By changing the orientation of the OCSRRs, two types of unit cell are proposed. Moreover, by resizing the OCSRRs, resonance frequency can be easily moved and the bandwidth can be tuned by the coupling between two OCSRRs. Compared with some other reported bandpass filters (BPFs) with SIW technique, the presented BPF has great improvements on size reduction and selectivity. To verify the methodology, two filters with center frequency of 5.5 GHz are designed and measured. The measured results are in good agreement with the simulated ones. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:674–682, 2016.  相似文献   

15.
An equivalent circuit model for the wide‐band band‐pass filters (BPFs) using modified Minkowski‐island‐based (MIB) fractal patch are proposed in this article. The BPF is mainly formed by a square patch resonator in which a modified MIB fractal configuration with second‐order iteration is embedded in the patch. By the equivalent circuit model with diamond structure, the wide‐band responses are analyzed. The design procedure included equivalent circuit model is available for wide‐band design. For wide‐band characteristics, at 5.0 GHz central frequency, it has good measured characteristics including the wider bandwidth of 3.14–6.89 GHz (3‐dB fractional bandwidth of 75%), low insertion loss of 0.39 dB, and high rejection level (?48.5/?44.9 dB). The patch size is 7.4 λ 7.4 mm2 (0.25 λg × 0.25 λg) with 14.1% reduction. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:170–176, 2014.  相似文献   

16.
A procedure has been developed for the design of microwave active frequency doublers. A fully nonlinear model and design‐oriented algorithm are used for the best accuracy. Optimum conversion gain and stable operations are achieved as a result of optimum harmonic loading. A simplified analysis is also presented, giving results in qualitative and good quantitative agreement with the exact nonlinear results. Such a procedure represents a first‐pass procedure for device selection and performance evaluation. The same technique can be extended to higher‐order frequency multipliers. ©1999 John Wiley & Sons, Inc. Int J RF and Microwave CAE 9: 117–128, 1999.  相似文献   

17.
This article introduces a new design and analysis of a compact reconfigurable bandpass/lowpass filter based on compact negative refractive index metamaterial transmission line. The filter equivalent circuit has been designed as a cascade of three cells of bisected‐Π/Π configuration. The reconfigurable function was achieved using inserted switches in ON and OFF modes within the cells. The filter works as bandpass when all switches are in ON condition and for lowpass switch‐1 is in OFF and switch‐2 in ON condition. The low pass filter has 3‐dB cutoff frequency of 3.25 GHz with a selectivity of 170 dB/GHz. The bandpass filter is cantered at 3.65 GHz and has a well‐matched pass band with insertion loss of 0.2 dB and wide stop band with two transmission zeros (TZs). The frequency positions of TZs are independently varying with series and shunt loading elements. The filter performance has been validated through circuit model, electromagnetic simulation, and experimental measurements. The electrical size of bandpass filter excluding feed line is 0.22 λg × 0.20 λg (12 × 11 mm2) at center frequency of 3.65 GHz and for lowpass filter is 0.19 λg × 0.18 λg at cutoff frequency of 3.25 GHz. The filter can be applied in suitable for different wireless applications.  相似文献   

18.
A new defected ground structure (DGS) consisting of two square ring slots connects with a rectangular ring slot by two thin transverse slots under a microstrip line is proposed. In the frequency characteristics of proposed unit pattern, an attenuation zero is observed close to the attenuation pole. As a result, better transition sharpness, lower passband insertion loss and broader stopband are observed compares to dumbbell DGS. An equivalent lumped L‐C network is proposed to model the introduced DGS unit and corresponding L‐C parameters are extracted. Insertion loss is reduced by alternative transmission line on the top plane of the DGS unit. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

19.
This work presents the first example of monolithically integrated phase shifter based on a pass‐band filter architecture. The proposed configuration was realized mapping a classical quarter‐wave coupled filter circuit into its lumped element equivalent. Phase control is achieved by controlling the pass‐band through tunable tanks employing varactor diodes. A demonstrator was prototyped in the 24 GHz ISM band using a 0.25μm SiGe BiCMOS technology. Experimental results show 180° of phase range and maximum transmission losses of 8 dB. The main feature of this configuration is that it allows controlling the transmission losses by design and that its size is extremely compact.  相似文献   

20.
An elliptical function low‐pass filter (LPF) with ultra wide stopband and sharp cutoff frequency is proposed. This filter is composed of symmetrical cascaded modified hairpin resonators and U‐shaped resonators. The transition band is from 1 to 1.21 GHz with ?3 and ?20 dB, respectively. For this filter, the return loss is better than 17 dB in 80% of passband width, where the insertion loss is less than 0.3 dB. The band‐stop rejection is greater than 20 dB from 1.21 to 26.35 GHz and 40 dB from 1.35 to 12.5 GHz. To validate the design and analysis, the proposed LPF has been designed and fabricated on a 20 mil thick RO4003 substrate with a relative dielectric constant 3.38 and loss tangent of 0.0021. The filter is evaluated by experiment and simulation with a good agreement. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:314–321, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号