首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article discusses a technique based on combination of multimode resonators (MMR) and complementary split ring resonators (CSRR) to design multi notch‐bands ultra wide‐band (UWB) band‐pass filters (BPF). The proposed structure consists of two parallel multimode resonators, resulting in a dual notch‐band UWB BPF, integrated with a single cell of CSRR to realize the third notch‐band. The mechanism of realizing the notch‐bands is mathematically presented and a triple notch‐bands UWB BPF is designed, simulated and fabricated. The overall size of the proposed filter is reported to be around 36 × 7.7 mm2 where a size reduction of around 35% is demonstrated in comparison to the conventional filter. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:375–381, 2014.  相似文献   

2.
In this paper, a compact novel simple design of ultra‐wide bandpass filter with high out of band attenuation is presented. The filter configuration is based on combining an ultra‐wide band composite right/left‐handed (CRLH) band pass filter (BPF) with simple uni‐planar configuration of complementary split ring resonator (UP‐CSRR). By integrating two UP‐CSRR cells, the ultra‐wideband CRLH filter roll‐off and wide stopband attenuation are enhanced. The filter has 3 dB cutoff frequencies at 3.1 GHz and 10.6 GHz with insertion loss equals 0.7 dB in average and minimum and maximum values of 0.48 dB and 1.05 dB, respectively over the filter passband. Within the passband. The transition band attenuation from 3 dB to 20 dB is achieved within the frequency band 1.9 GHz to 3.1 GHz (48%) at lower cutoff and the frequency band 10.6 GHz to 11.4 GHz (7%) at upper stopband. Moreover, the filter has a wide stopband attenuation >20 dB in frequencies 11 GHz to 13.6 GHz (21%) and ends with 3 dB cutoff frequency at 14.8 GHz. Furthermore, the designed filter size is very compact (23 × 12 mm2) whose length is only about 0.17 λg at 6.85 GHz. The filter performance is examined using circuit modeling, full‐wave simulations, and experimental measurements with good matching between all of them.  相似文献   

3.
The folded multiple‐mode resonators with complementary split ring resonator (CSRR), and defected ground structures (DGS) are introduced for notched ultrawideband (UWB) bandpass filter (BPF) design in this article. Using the CSRR, FMRR, notched wide‐band BPF, a notch response can exist in the UWB passband for blocking the interference. Adjusting the size factor of CSRR, the wide tuning ranges of notch frequencies included the desired frequencies of 5.2/5.8 GHz are achieved. The lower insertion loss (0.31 dB), higher rejection level (?48.40 dB), wider bandwidth (FBW 75%), and wider stopband (extended to 2.01 f0 below ?20 dB rejection level) of UWB band at the central frequency f0 = 4.58 GHz are obtained. Second, design a CSRR, DGS, FMRR, tri‐notched UWB filter, the wider bandwidth (3.1–9.8 GHz) with FBW = 126%, lower insertion loss (0.26 dB), and higher rejection level (?44 dB) of UWB band at central frequency f0 = 5.6 GHz are presented. Using the CSRR and interdigital couple, three notch responses can exist in the UWB passband for blocking the interference signals. Adjusting the size factor of CSRR and interdigital couple, the wide tuning ranges of notch frequencies included the desired frequencies of 5.18/6.10/8.08 GHz are achieved. The wide tuning ranges of three notched frequencies cover from 5.0 to 8.4 GHz. It is a simple way to control the notch responses. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:571–579, 2014.  相似文献   

4.
This article presents two novel resonators, that is, frequency selecting coupling structure loaded stepped‐impedance resonator (FSCSLSIR) and π‐section loaded FSCSLSIR. The resonator behaviors and guidelines are given to design FSCSLSIR dual‐band bandpass filter (BPF) and π‐section loaded FSCSLSIR triband BPF. The proposed dual‐ and triband BPF have very compact sizes of 0.13 λgd × 0.06 λgd and 0.115 λgt × 0.074 λgt, respectively. Moreover, good return loss, low insertion loss, and high band‐to‐band isolation can be observed, and the proposed FSCSLSIR dual‐band BPF has an ultrawide stopband from 5.79 to 36 GHz. The experimental results are in good agreement with the simulations. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:427–435, 2015.  相似文献   

5.
A novel band‐stop filter with single‐loop split ring resonators (SRRs) is proposed for spoof surface plasmon polaritons (SPPs) at millimeter wave frequencies, achieving a miniaturized size of 0.052λ0 × 0.278λ0 at its resonant frequency. The SRRs provide both a low‐pass response as the rectangular corrugations used in the conventional SPPs and an additional band‐stop response induced by the resonance of SRRs. To verify this design, a back‐to‐back device with two coplanar waveguides as the input and output feeding was fabricated and characterized, the measured S‐parameters of which agree well with the simulation. The measured stop band is centered at 49 GHz with a ?10‐dB bandwidth of 4.1 GHz and a high Q‐factor of 93, in which the maximum attenuation is 31 dB. The filter has a low insertion loss of less than 2.8 dB in the pass band. Such approaches may find many applications to achieve compact millimeter wave circuits.  相似文献   

6.
A millimeter‐wave ultrawideband two‐way switch filter module is presented in this article. The switch filter module covers whole Ka‐band (26–40 GHz), and is composed of two wideband band‐pass filters and two monolithic microwave integrated circuit (MMIC) single pole two throw (SP2T) switches. One filter is realized using E‐plane iris waveguide band‐pass filter, and another is realized by a novel 11‐pole three‐line microstrip structure band‐pass filter. Compared with the traditional three‐line filter, the proposed three‐line filter not only retains virtues of the traditional three‐line filter, but also resolves drawbacks of it, which include discontinuities between adjacent sections, many parameters of design, and no effective matching circuits at input/output ports. The developed switch filter module is fabricated using hybrid integrated technology, which has a size of 51 × 26 × 9.8 mm3, and interconnections between MMICs and microstrip are established by bond wires. The fabricated switch filter module exhibits excellent performances: for two different states, the measured insertion loss and return loss are all better than 7 and 10 dB in each pass‐band, respectively. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:305–310, 2015.  相似文献   

7.
The miniaturized dual‐mode tri‐band band‐pass filters (BPF) using crossed‐island patch resonator is proposed in this article. The BPF is mainly formed by a square patch resonator in which a crossed‐island configuration is embedded in the patch. The patch size reduction with 74.4% is achieved. By the perturbation and the alternative inter‐digital coupling, the tri‐band responses are obtained. The proposed filter covers the required bandwidths for WLAN band (2.26–3.11 GHz and 5.02–6.0 GHz) and X‐band (7.58–8.41 GHz) applications. Five transmission zeros are placed between three pass‐bands and resulted in a good isolation. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:457–463, 2014.  相似文献   

8.
Two dual‐band band pass filters (BPF) using stub‐loaded open‐loop (SLOL) resonator are presented in this article. A novel coupling tuning method by changing the relative coupling position of the resonators is proposed to control the bandwidth of each passband in a wide range. Transmission zeros are created to improve the selectivity by source‐load coupling. Because of the large ratio of two bandwidths, a novel dual‐band matching method is proposed to match the different load impedances at two passband frequencies to the same source impedance. Hence, relax the fabrication requirement of gap. The proposed dual‐band band pass filter is designed and fabricated. The measured 3 dB fractional bandwidths (FBWs) of two 2.45/5.25 GHz dual‐band BPFs are 6.5%/14.5% and 9.8%/5.5%, respectively. The results are in good agreement with the simulation. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:367–374, 2014.  相似文献   

9.
10.
This letter presents a novel miniaturized differential dual‐band bandpass filter (BPF) using a single quad‐mode metal‐loaded dielectric resonator (DR). The differential dual‐band BPF is designed in a single‐cavity configuration with one quad‐mode DR and four feeding probes, featuring compact size. The rectangular DR is directly mounted on the bottom of the metal cavity and covered by a metal plate on the top surface. It allows two pairs of orthogonal modes (LSE10 and LSM10), which can be differentially excited and coupled by introducing proper perturbation for constructing dual‐band differential‐mode frequency response. To validate the proposed idea, a compact differential BPF with good performance using a quad‐mode DR cavity is designed, fabricated, and measured. The simulated and measured results with good agreement are presented.  相似文献   

11.
An equivalent circuit model for the wide‐band band‐pass filters (BPFs) using modified Minkowski‐island‐based (MIB) fractal patch are proposed in this article. The BPF is mainly formed by a square patch resonator in which a modified MIB fractal configuration with second‐order iteration is embedded in the patch. By the equivalent circuit model with diamond structure, the wide‐band responses are analyzed. The design procedure included equivalent circuit model is available for wide‐band design. For wide‐band characteristics, at 5.0 GHz central frequency, it has good measured characteristics including the wider bandwidth of 3.14–6.89 GHz (3‐dB fractional bandwidth of 75%), low insertion loss of 0.39 dB, and high rejection level (?48.5/?44.9 dB). The patch size is 7.4 λ 7.4 mm2 (0.25 λg × 0.25 λg) with 14.1% reduction. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:170–176, 2014.  相似文献   

12.
An ultra‐wideband compact bandpass filter (BPF) with configurable stopband by tuning transmission zeroes is proposed in this paper. The ultra‐wideband bandpass response is based on a diamond‐shape resonator consisting of a pair of broadside coupled diamond‐shape microstrip lines, within which a diamond shape defected ground structure (DGS) is etched in the middle. Flexible transmission zeros realized by open and short stubs can be easily adjusted to improve band selectivity and harmonic suppression. Measurement result shows that the dedicated device has a 3 dB fractional bandwidth of 148% (0.94‐6.36 GHz) with 20 dB rejection stopband from 6.87 to 9.7 GHz (77.5%) which agrees good with the simulate performance. The overall size of the proposed BPF is 0.27 λg × 0.23 λg.  相似文献   

13.
We propose the improved configurations with dual‐mode dual‐square‐loop resonators (DMDSLR) for quad‐band bandpass filter (BPF) design. The modified DMDSLR filter employs two sets of the loops. The square loop is designed to operate at the first and third resonated frequencies (2.4/5.22 GHz) and the G‐shaped loop is employed at the second and fourth resonated frequencies (3.59/6.6 GHz). The resonant frequency equations of DMDSLR are introduced for simply designing quad‐band BPF. Resonant frequencies can be controlled by tuning the perimeter ratio of the square loops. A systematic design procedure with the design map is applied for accuracy design. To obtain lower insertion loss, higher out‐of‐band rejection level and wider bandwidth of quad‐band, the miniaturized DMDSLR with meander‐line technique is proposed. The proposed filters are successfully simulated and measured showing frequency responses and current distributions. It can be applied to WLAN and WiMAX quad‐band systems. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:332–340, 2014.  相似文献   

14.
A compact ultra‐wideband multiple‐input multiple‐output (UWB‐MIMO) antenna with good isolation and multiple band‐notch abilities is developed in this work. It consists of two quadrant shaped monopole antennas backed by ground stubs. A good isolation is achieved due to the two proposed extended curved ground stubs. The frequency rejection for the WLAN system is realized by loading a capacitive loaded loop resonator adjacent to the feed line. The band rejection for the WiMAX and LTE band43 system is achieved by embedding a quadrant shaped CSRR on each radiator's surface. The measured bandwidth of the antenna is 3.06 GHz‐11 GHz (|S11| < ?10 dB and |S21| < ?18 dB) with a band rejection from 3.5 GHz‐4 GHz to 5.1 GHz‐5.85 GHz, respectively. Time domain performances are investigated in terms of group and phase delay characteristics. Diversity characteristics are evaluated in terms of the envelope correlation coefficient, mean effective gain, and channel capacity loss.  相似文献   

15.
A compact ultrawideband (UWB) bandpass filter (BPF) employing the principle of multiple mode resonance characteristics to create UWB passband with high selectivity and simultaneously having extensive stopband characteristic is presented. Utilizing five stubs attached along with the asymmetric trisection stepped impedance resonator (ATSSIR), the proposed resonator enables seven transmission poles inside the passband. As an additional attributes the projected filter triggers one transmission zero at 5.0 GHz which helps to mitigate WLAN signal interference. No additional circuitry is used to generate a notch band. The proposed prototype of UWB BPF is fabricated and estimated. Simulated and estimated results are in great understanding. The prospective filter displays a deliberate passband from 2.9 to 11.02 GHz. The filter unveils deceptive free wide upper stop band attributes till 25 GHz with least attenuation of 10 dB all through the stop band.  相似文献   

16.
New multi‐standard wide band filters with compact sizes are designed for wireless communication devices. The proposed structures realize dual‐wideband and quad‐wideband characteristics by using a new skew‐symmetrical coupled pair of asymmetric stepped impedance resonators, combined with other structures. The first and second dual‐wideband filters realize fractional bandwidths (FBW) of 43.2%/31.9% at the central frequencies (CF) of 1.875/1.63 GHz, and second bandwidths of 580 MHz/1.75 GHz at CF of 5.52/4.46 GHz, respectively. The proposed quad‐band filter realizes its first/second/third/fourth pass bands at CF 2.13/5.25/7.685/9.31 GHz with FBW of 46.0%/11.4%/4.6% and 5.4%, respectively. The wide pass bands are attributed to the mutual coupling of the modified ASIR resonators and their bandwidths are controllable by tuning relative parameters while the wide stop band performance is optimized by the novel interdigital cross coupled line structure and parallel uncoupled microstrip line structure. Moreover, the quad band is generated by introducing the novel defected rectangle structure. These multi‐standard filters are simulated, fabricated and measured, and measured results agree well with both simulated results and theory predictions. The good in‐band and out‐of‐band performances, the miniaturized sizes and simple structures of the proposed filters make them very promising for applications in future multi‐standard wireless communication.  相似文献   

17.
A wideband bandpass filter (BPF) is designed based on U‐slotted slow wave half mode substrate integrated waveguide (SW‐HMSIW) cavities. Similar to the substrate integrated waveguide (SIW), the SW‐HMSIW can also achieve a highpass characteristic while the lateral dimensions can be reduced by about 50%. By etching a U‐shape slot on the SW‐HMSIW cavity, a multiple‐mode resonator (MMR) can be realized, which can achieve a wide passband response and make the overall dimension of the filter much more compact. A wide passband, covering from 6.0 GHz to 10.65 GHz with a FBW about 58.13% is achieved. The measured minimum insertion losses including the losses from SMA connectors are 1.1 dB and return losses are better than 10 dB. Besides, the group delay varies between 0.2 and 0.5 ns within the passband. To validate its practicability, a wideband SW‐HMSIW BPF fabricated on a double‐layer printed circuit board (PCB) is designed and examined. The proposed filter has a more than 54% size reduction compared to the other designs reported in open literatures. The measured results have a good agreement with the simulated results. The effective size of the fabricated filter is about 27 mm × 8.55 mm.  相似文献   

18.
A novel compact balun‐diplexer applying new interdigital line resonators (ILRs) is presented in this article. It is found that the proposed ILR can not only reduce circuit size and but also realize high common mode rejection in differential mode operation frequency. By properly converting the symmetric four‐port balanced bandpass filter (BPF) to a three‐port device, a balun BPF with high selectivity and compact size are accomplished using ILRs. Then, the balun‐diplexer can be realized by combining two well‐designed balun filters with two 50 Ω transmission lines. The demonstrated balun‐diplexer with operation at 1.8 and 2.45 GHz have been designed, fabricated, and measured. Excellent performances have been observed. Specifically, 0.4 dB in‐band amplitude error, 1.8 in‐band phase error, more than 50 dB selectivity and 45 dB isolation are obtained. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:485–489, 2015.  相似文献   

19.
A coupled‐line band‐pass filter (BPF) with T‐shaped stub structure is presented. Five transmission poles within the passband and eight deep transmission zeros (TZs) from 0 to 2f0 (f0 denotes filter's center frequency) are realized through input impedance calculations. With the simple T‐shaped structure, the positions of six TZs can be appropriately adjusted to achieve high frequency selectivity and stopband rejection. For demonstration, a BPF prototype centered at 2.05 GHz is designed and fabricated, whose measured rejection levels are of over 45.5 dB at lower stopband and better than 19.5 dB at upper stopband. The simulation and measurement results are in good agreement, which validates the design idea.  相似文献   

20.
A quad‐port planar multiple‐input‐multiple‐output (MIMO) antenna possessing super‐wideband (SWB) operational features and triple‐band rejection characteristics is designed. The proposed MIMO configuration consists of four modified‐elliptical‐self‐complementary‐antenna (MESCA) elements, which are excited by tapered co‐planar waveguide (TCPW) feed lines. A radiator‐matched complementary slot is present in the ground conductor patch of each MESCA element. The proposed MIMO antenna exhibits a bandwidth ratio of 36:1 (|S11| < ?10 dB; 0.97‐35 GHz). Further, a step‐like slit‐resonator is etched in the radiator to eliminate interferences at 3.5 GHz. A hexagonal shaped complementary split ring resonator (CSRR) is also loaded on the MESCA radiator to remove interferences at 5.5 and 8.5 GHz. The MIMO antenna is fabricated on FR‐4 substrate of size 63 × 63 mm2 and experimental results are found in good agreement with the simulated results. The MIMO antenna exhibits inter‐element isolation >17 dB and envelope correlation coefficient (ECC) <0.01 at all the four ports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号