首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basic fibroblast growth factor (bFGF), a multifunctional growth factor produced by bone marrow stromal cells, is known to be a potent modulator of hematopoiesis. Because bFGF is present in both human megakaryocytes (MKs) and platelets, we have hypothesized that this growth factor might affect human megakaryocytopoiesis. To test this hypothesis, either low density bone marrow (BM) cells (LDBM), a human BM subpopulation (CD34+ DR+) enriched for the colony-forming unit megakaryocyte (CFU-MK) or a BM subpopulation (CD34+ DR-) enriched for the more primitive burst-forming unit megakaryocyte (BFU-MK) were assayed in the presence of this growth factor. The effect of bFGF on MK colony formation differed according to the cell population assayed. bFGF alone had on MK colony-stimulating activity (MK-CSA) when either CD34+ DR+ or CD34+ DR- BM cells were cloned, but exhibited MK-CSA equivalent to that of interleukin-3 (IL-3) when LDBM cells were used as the target cell population. The MK-CSA of bFGF was inhibited by the addition of neutralizing antisera to either IL-3 and/or granulocyte-macrophage colony-stimulating factor (GM-CSF) but not IL-6. The addition of excess amounts of either IL-3 or GM-CSF to cultures containing bFGF plus anti-IL-3 or anti-GM-CSF reversed the inhibition by the corresponding antisera. The addition of bFGF and IL-3 to assays containing CD34+ DR+ or CD34+ DR- cells increased the size of both CFU-MK- and BFU-MK-derived colonies, respectively, when compared with assays containing IL-3 alone. This increase in MK colony size mediated by bFGF was not affected by addition of either an anti-GM-CSF or anti-IL-6 neutralizing antisera. When LDBM cells were assayed, bFGF alone increased CFU-MK-derived colony size when compared with control values. However, this potentiation of MK colony size by bFGF could be reversed by the addition of either anti-IL-3 or anti-GM-CSF but not anti-IL-6 antisera. In addition, the effects of bFGF and IL-3 on the size of MK colonies cloned from LDBM were not additive. These results suggest that bFGF affects human megakaryocytopoiesis by directly promoting MK progenitor cell proliferation and stimulating BM accessory cells to release growth factor(s) with MK-CSA, such as IL-3 and GM-CSF. We conclude that bFGF, likely produced by cellular components of the BM microenvironment, plays an important role in the control of human megakaryocytopoiesis.  相似文献   

2.
Basic fibroblast growth factor (bFGF), a neurotrophic factor in the CNS, is expressed at high levels in response to seizures or strokes. We examined the expression of bFGF during experimental bacterial meningitis and the levels of bFGF in the cerebrospinal fluid (CSF) of children with bacterial meningitis. For the experimental study, a mouse model of meningitis was established by intracranial injection of Streptococcus pneumoniae. Twenty-four hours after induced meningitis, the brains were sectioned and stained immunohistochemically for bFGF. Neutrophils and macrophages infiltrating the leptomeninges and the ventricles exhibited strong bFGF immunoreactivity. The neurons in the areas adjacent to the inflamed ventricles also showed enhanced bFGF expression. For the clinical study, we used an enzyme immunoassay to measure bFGF in CSF in 18 children with bacterial meningitis, 12 with aseptic meningitis, and 18 controls. The CSF levels of bFGF were twice as high in children with bacterial meningitis (medians 6.75-7.21 pg/mL) compared with those who had aseptic meningitis (2.9 pg/mL) or in control subjects (2.65 pg/mL, p < 0.0001, respectively). In patients with bacterial meningitis who survived, CSF bFGF decreased significantly after 24-50 h of antibiotic therapy (p < 0.0005). Patients who developed major sequelae or died had much higher levels of CSF bFGF than those without (134.9 pg/mL versus 7.38 pg/mL, p < 0.05). These findings of enhanced immunoreactivity of bFGF in experimental bacterial meningitis and an association of CSF levels of bFGF with disease severity in childhood bacterial meningitis suggest a biologic role for this neurotrophic factor in the pathophysiology of bacterial meningitis.  相似文献   

3.
The effect of basic fibroblast growth factor on tissue ingrowth and differentiation in porous hydroxyapatite of coralline origin was studied in a bone chamber model. The hydroxyapatite with or without basic fibroblast growth factor was placed in 22 mm3 titanium bone conduction chambers implanted bilaterally in rat tibiae. Ingrowing bone could enter the cylindrical interior of the chamber only at 1 end. It then penetrated the porous hydroxyapatite inside the chamber. The distance that the ingrown tissue had reached into the material then was measured on histologic slides. Because fibrous tissue always reached further into the material than did bone, both total tissue ingrowth and bone ingrowth distances were measured. In implants supplemented with 0.04 microg basic fibroblast growth factor in a hyaluronate gel carrier, the bone ingrowth distance was increased by 70% at 6 weeks, as compared with paired controls in the contralateral leg. The total tissue ingrowth distance also was increased by 58%. When the dose of basic fibroblast growth factor was increased to 1.0 microg, still using the hyaluronate carrier, there was no difference in bone ingrowth compared with controls, but this dose still increased the total tissue ingrowth. In hydroxyapatite with 1.5 microg basic fibroblast growth factor without hyaluronate gel at 4 weeks, no increase in bone ingrowth was shown, but total tissue ingrowth was increased. At 6 weeks, bone ingrowth and total tissue ingrowth were increased by 41% and 33%, respectively. With a lower dose of 0.15 microg without carrier, only the total ingrowth distance was increased. The results suggest that basic fibroblast growth factor may promote tissue ingrowth into porous hydroxyapatite and that bone ingrowth may be increased by appropriate doses. The hyaluronate gel carrier reduced the optimal dose.  相似文献   

4.
PURPOSE: To investigate the induction of basic fibroblast growth factor (bFGF) gene expression in cultured rat Müller cells by bFGF and to study the mechanism of induction. METHODS: Müller cells from 1- to 3-day-old Sprague-Dawley rats were isolated and cultured with Dulbecco's modified Eagle's medium with 10% fetal calf serum. Cultured cells were identified by immunocytochemistry using antibodies against vimentin, carbonic anhydrase II, and glutamine synthetase. Cells of passages 1 through 4 were treated with bFGF, the protein kinase C (PKC) inhibitor, H-7; calphostin C, or the PKC activator, PMA; and protein kinase A (PKA) inhibitor, H-89; as well as the adenylate cylase activator, forskolin; or the adenylate cyclase inhibitor, SQ22536. Northern blot analysis was performed to determine the mRNA expression of bFGF, ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF). RESULTS: Addition of bFGF to culture medium induced bFGF gene expression in a dose- and time-dependent manner. Induction of bFCF mRNA started at a bFGF concentration of 0.1 ng/ml. The bFGF mRNA level was elevated by 2-fold at 1 ng/ml of bFGF, 2.8-fold at 5 ng/ml, and reached a peak of 4-fold at 10 ng/ml and 3.7-fold at 50 ng/ml. At 10 ng/ml of bFGF, induction of bFGF mRNA was observed as early as 2 hours (2-fold) after treatment. The bFGF mRNA level continued to increase to 3.7-fold by 4 hours, and reached a maximum of 4.4-fold by 8 hours. A slow decline of the bFGF mRNA level was observed after 8 hours of bFGF treatment (3.5-fold by 12 hours, and 3-fold by 24 hours). This induction of bFGF gene expression was blocked by PKC inhibitors H-7 (30 microM). The PKC activator PMA (0.1 microM) also upregulated bFGF gene expression, but the effects of bFGF and PMA were not additive. An adenylate cyclase inhibitor, SQ22536 (100 microM), did not inhibit bFGF-induced bFGF gene expression. Although forskolin (5 microM), an adenylate cyclase activator, also upregulated the level of bFGF mRNA, the effects of forskolin and bFGF were additive. In addition, no inhibitory effect on bFGF-induced expression of bFGF mRNA was found using H-89 (1 microM). Exogenous bFGF did not alter the mRNA levels of CNTF and BDNF. CONCLUSIONS: These results indicate that bFGF induces bFGF gene expression in cultured rat Müller cells through PKC activation. The authors' findings raise the possibility that Müller cells in vivo also respond to available bFGF (for example, that released from the endogenous reservoirs in the case of injury) or to exogenous bFGF by producing more bFGF, which could in turn promote photoreceptor survival.  相似文献   

5.
In the present study we examined the in vitro regulation of plasminogen activator inhibitor I (PAI-1) expression in peritubular cells recovered from 20-day-old rat testes. We tested two growth factors, basic fibroblast growth factor (bFGF) and transforming growth factor-alpha (TGF alpha). They are synthesized by Sertoli cells, and peritubular cells exhibit the corresponding high affinity receptors. After exposure to bFGF or TGF alpha (0.1-30 ng/ml), PAI-1 messenger RNA levels, as determined by Northern hybridization analysis, increased in a dose-dependent manner. The first significant effects were noted after 2-h exposure to bFGF or TGF alpha (10 ng/ml), and PAI-1 messenger RNA levels were maximally stimulated approximately 12-fold (bFGF) and 8-fold (TGF alpha) after 4 h. The two growth factors increased the amount of immunoreactive (Western blots) and biologically active (Stachrom) PAI-1 measured in the culture medium. Actinomycin D inhibited the effects of these factors, whereas cycloheximide augmented them. Phorbol myristate acetate, an activator of protein kinase C, mimicked the effects of bFGF and TGF alpha. Interestingly, long term (24-h) pretreatment with phorbol myristate acetate resulted in a severe loss of responsiveness to bFGF or TGF alpha. Staurosporine, an inhibitor of protein kinase C, also significantly reduced the effects of bFGF and TGF alpha. Given that PAI-1 inhibits Sertoli cell plasminogen activator activity and that bFGF and TGF alpha are synthesized by Sertoli cells, these factors are likely to interact to regulate protease activity in localized regions of the seminiferous tubule.  相似文献   

6.
Basic fibroblast growth factor (bFGF) significantly enhances the short-term survival of embryonic striatal neurons in vitro but has little effect on the outgrowth of striatal cells compared to neurons from other brain regions. Studies in our laboratory have shown that bFGF protects postnatal striatal cells in vitro from NMDA receptor-induced neurotoxicity. We therefore examined the effects of bFGF on the outgrowth of GABA-containing cells taken from the postnatal (Day 1) caudate-putamen and cultured for up to 3 weeks. In control cultures GABAergic neurons formed three populations based on somatic size and developed the cytoarchitectural features characteristic of dendrites, spines, and axons. In the presence of bFGF (6 pM continuously from the day of plating), small- and medium-sized GABAergic neurons showed significant increases compared to untreated controls in axon-like growth (axon length) at 6 days in culture and in both axon- and dendrite-like neurite growth (axon length and branch order, number of primary dendrites, dendrite length, and dendritic branch order) at 13 and 17 days in culture. Large GABAergic neurons were unaffected by treatment with bFGF. Striatal GABAergic neurons exposed to nerve growth factor (10 ng/ml) were not different from untreated controls. Neuron survival was also unaffected by bFGF treatment at all days in culture examined. Other observations suggested that the neurotrophic effects of bFGF were mediated by a direct action of the growth factor on striatal neurons and not glial cells. First, glial cells (identified by the immunohistochemical localization of glial fibrillary acidic protein) were unaffected by bFGF treatment at the low concentration (6 pM) used to enhance neurite growth, but did significantly proliferate at higher concentrations of bFGF (6 nM). Second, immunoreactive bFGF receptor protein was localized predominantly to the somata and processes of striatal neurons and not to glial cells in the cultures. Finally, when neurons from control cultures were briefly exposed (1 to 4 h) to bFGF at concentrations which were neurotrophic, a marked elevation in the immediate early gene protein c-fos was observed by immunohistochemistry in the nuclei of neurons, including GABAergic cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The growth of a cholesteatoma requires angioneogenesis in the connective tissue of the perimatrix. Angioneogenesis is also needed for wound healing as a host response to tissue injury. Normal wound repair is conducted through a wide number of growth factors. Basic fibroblast growth factor (b-FGF) plays a pivotal role in wound repair. This cytokine exerts its effects through stimulation of a wide range of target cells. B-FGF is chemotactic and mitogenic for fibroblasts, endothelial cells and keratinocytes. In addition, b-FGF can stimulate the production of collagenase and plasminogen activators to enhance fibroblast proliferation and angioneogenesis. Its necessity for normal wound repair has been confirmed by several workers. METHOD: In order to demonstrate angioneogenesis in the cholesteatoma perimatrix the distribution of b-FGF as the pivotal cytokine of the process was investigated in the perimatrix of 18 cholesteatoma specimens. RESULTS: B-FGF could be observed in 12 of 18 specimens (66%) in close approximation to histological signs of inflammation and wound healing. Areas with b-FGF also exhibited proliferation of the covering squamous epithelium. Cholesteatoma matrix tissue without inflammation or any sign of wound healing did not express b-FGF (6 of 18). CONCLUSION: Histological changes and distribution pattern of b-FGF in the perimatrix of cholesteatoma in the present study indicate that the perimatrix cells and substances of the wound healing cascade may play an important role in cholesteatoma development, angiogenesis and growth.  相似文献   

8.
9.
Autocrine stimulation of the type I insulin-like growth factor receptor (IGF-IR) by IGF-II is one mechanism that allows cancer cells to maintain unregulated growth and to resist programmed cell death (PCD). SH-SY5Y and SHEP cells are cloned human neuroblastoma (NBL) lines originating from a single primary tumor. SH-SY5Y cells, which express abundant cell surface IGF-IR and produce IGF-II, exhibit serum independent growth and resist PCD due to hypoxia and hyperosmolar conditions. In contrast, SHEP cells, which produce no IGF-II and express five-fold fewer IGF-IRs, die in serum-free media or following exposure to metabolic stressors. To better understand the roles of IGF-IR and its ligand, IGF-II, in NBL carcinogenesis, we stably transfected SHEP cells with either IGF-II or IGF-IR. Unregulated expression of IGF-II did not alter the growth characteristics of SHEP/human IGF-II transfectants. In contrast, overexpression of IGF-IR allowed SHEP/IGF-IR transfectants to survive in media supplemented only by IGF-II. IGF-IR abundance correlated in a graded fashion with resistance to PCD in response to three different death-inducing paradigms: mitogen withdrawal, hyperosmolar metabolic stress, and treatment with etoposide. Our results suggest that adjuvant therapy aimed at reducing IGF-IR abundance may enhance chemotherapy-coupled apoptosis in the treatment of NBL.  相似文献   

10.
OBJECTIVE: To determine if insulinlike growth factor I (IGF-I) and basic fibroblast growth factor (bFGF), individually or in combination, support the growth and viability of human septal chondrocytes in a serum-free medium (SFM) and a serum-enhanced culture medium. DESIGN: Chondrocytes were recovered from enzymatically digested human septal cartilage and were plated for monolayer culture in a newly developed medium. The medium included Dulbecco modified Eagle medium mixed 1:1 with Ham F12 medium and a supplement of known amounts of 2 growth factors-bFGF (100 ng/mL) and IGF-I (100 ng/mL)-used in combination and separately. RESULTS: The combination of IGF-I and bFGF enhanced chondrocyte growth and maintained a high degree of viability in SFM and 10% fetal calf serum. After an initial lag, the SFM, augmented with both growth factors, produced a comparable number of viable cells (4.25+/-0.31 x 10(4)) to that of the medium with 10% fetal calf serum (4.64+/-0.35 x 10(4)) by the seventh day of the experiment. Combined with the 2 growth factors, 10% fetal calf serum provided the greatest proliferation by the end of the experiment. However, the overall mean cell counts for the IGF-I- and bFGF-enhanced SFM were not statistically different. CONCLUSIONS: The combination of IGF-I and bFGF in a serum-free and a serum-supplemented environment supports the growth and viability of human septal chondrocytes in short-term culture. In an SFM, the results obtained approximate those produced in a medium enhanced with 10% fetal calf serum.  相似文献   

11.
OBJECTIVE: To evaluate the long-term effects of lactic acidosis and to examine a potential neuroprotective role of basic fibroblast growth factor (bFGF) on hippocampal neurons. DESIGN: Long-term observation in a cell-culture study. SETTING: University research laboratory. SUBJECTS: Adult, differentiated, primary rat hippocampal neurons. INTERVENTIONS: Neurons were exposed to medium acidified with 20 mM lactic acid, pH 6.2, for a 10-min period, and maintained untreated or in the presence of bFGF (500 pg/mL, 1 ng/mL, 10 ng/mL, 20 ng/mL) applied after exposure. MEASUREMENTS AND MAIN RESULTS: Viability was analyzed by a dye inclusion/enzyme activity test and morphology by phase contrast and immunofluorescence microscopy. [3H]Arachidonic acid (AA) release was measured by liquid scintillation spectrometry. All cultures appeared to be unchanged during the first days after exposure to lactic acidosis. Neurodegeneration became apparent within 3 days. Seven days after exposure, cell survival decreased to 60% in lactic acidosis-injured, untreated cultures. Morphologic damage appeared as a 50% reduction in axonal and 25% reduction in dendritic arborizations. AA release increased to four-fold enhanced levels relative to control values. bFGF (1, 20, and 10 ng/ mL) enhanced neuronal viability (p < .05), and 10 ng/mL bFGF induced a maximal increase in live cells to 80% of controls. Axonal arborizations increased to 50% and dendritic arborizations to 75% of controls after 10 ng/mL bFGF (p< .05). bFGF in a dose of 20 ng/ mL enhanced axonal branching to 40% and dendrites in number and branching to 50% of controls (p< .05). bFGF (500 pg/mL, and 1 and 10 ng/mL) decreased enhanced AA (p < .05), and 10 ng/mL bFGF maximally reduced increased AA to two-fold enhanced values relative to controls. CONCLUSIONS: In vulnerable neurons, exposure to moderate lactic acidosis induces a process of cell injury with long latency. bFGF applied postinjury reduces the delayed neurodegeneration and may have neuroprotective efficacy in new therapeutic strategies to ischemia-induced cerebral injury.  相似文献   

12.
Glucocorticoids regulate hippocampal neuron survival during fetal development, in the adult, and during aging; however, the mechanisms underlying the effects are unclear. Since astrocytes contain adrenocortical receptors and synthesize and release a wide variety of growth factors, we hypothesized that glucocorticoids may alter neuron-astrocyte interactions by regulating the expression of growth factors in hippocampal astrocytes. In this study, three growth factors, which are important for hippocampal neuron development and survival, were investigated: basic fibroblast growth factor (bFGF), nerve growth factor (NGF), and S100beta. Enriched type I astrocyte cultures were treated with 1 microM dexamethasone (DEX), a synthetic glucocorticoid, for up to 120 h. Cells and culture medium were collected and total RNA and protein were measured at 6, 12, 24, 48, 72, 96 and 120 h after the initiation of hormone treatment. Growth factor mRNA levels were measured and quantified using solution hybridization-RNase protection assays and protein levels were quantified using ELISA methods. We report that DEX stimulates the bFGF mRNA levels over the 120-h treatment. In contrast, DEX suppresses NGF mRNA continuously over the same period of treatment. DEX induces a biphasic response in S100beta mRNA levels. In addition, some of the changes in gene expression are translated into parallel changes in protein levels of these growth factors. Our results demonstrate that dexamethasone can differentially regulate the expression of growth factors in hippocampal astrocytes in vitro. This suggests that one of the mechanisms through which glucocorticoids affect hippocampal functions may be by regulating the expression of astrocyte-derived growth factors.  相似文献   

13.
We performed a saturation binding study with 125I-labeled FGF (fibroblast growth factor)-2 in a nonselected series of 250 human primary breast cancers. Two hundred twenty-five breast cancer biopsies possessed bFGFR (basic FGF receptor). The median dissociation constant was 0.35 nM (range, 0.014-1.9), and the median concentration was 1126 fmol/mg protein (range, 49-7328). FGFR-1 was localized, using a specific monoclonal antibody, in cancerous cells and in epithelial cells in normal breast or in benign tumors. In all of the tissues studied, light stromal cell staining was also observed. Thus, the localization of FGFR-1 in carcinoma cells supports the hypothesis that an important part of FGF-2 binding reflects binding to FGFR-1. bFGFR concentrations were positively correlated to estrogen receptor and progesterone receptor levels. Cox univariate analyses showed that the bFGFR (> or = upper quartile) was associated to longer relapse-free survival [P = 0.004; RR (risk ratio), 0.46] and overall survival (P = 0.001; RR, 0.35); age, estrogen receptor levels, progesterone receptor levels, node involvement, tumor diameter, and histoprognostic grading were prognostic, also. In Cox multivariate analyses, only the bFGFR, age, node involvement, and histoprognostic grading were prognostic factors; the bFGFR was associated with longer relapse-free survival (P = 0.03; RR, 0.4) and overall survival (P = 0.009; RR, 0.3). The present study confirms that FGF could be an important regulator of human breast cancer growth and that patients with a high level of bFGFR had a better prognosis.  相似文献   

14.
In vitro transdifferentiation of retinal pigmented epithelial cells of the chick embryo into lens cells can be markedly enhanced by culture in the presence of testicular hyaluronidase and phenylthiourea. Since the commercial preparations of hyaluronidase that had previously been used were very crude, a search for the actual effective molecule(s) enhancing lens transdifferentiation was conducted. First, we purified the enzyme and tested the effect of the purified hyaluronidase. Highly purified hyaluronidase itself did not enhance lens transdifferentiation. The crude hyaluronidase was then separated according to affinity with heparin, considering the possibility that the fibroblast growth factor (FGF) is contained in the crude hyaluronidase. Transdifferentiation-enhancing activity was detected in the fraction which was bound to heparin and eluted with 2 M NaCl, where no hyaluronate-degrading activity existed. Analysis of the fraction by SDS-PAGE revealed the existence of an 18 kDa protein whose NH2-terminal sequence was identical to that of basic FGF. The basic FGF derived from bovine brain also enhanced lens transdifferentiation of pigmented epithelial cells. These findings suggest that basic FGF must play a major role in enhancing transdifferentiation of pigmented epithelial cells to lens cells.  相似文献   

15.
16.
Schwann cell basal lamina tubes serve as attractive conduits for regeneration of peripheral nerve axons. In the present study, by using basal lamina tubes prepared by in situ freeze-treatment of rat saphenous nerve, the effects of exogenously applied basic fibroblast growth factor (bFGF) on peripheral nerve regeneration was examined 2 and 5 days after bFGF administration. Regenerating axons were observed by light and electron microscopy using PGP9.5-immunohistochemistry for specific staining of axons. In addition, the localizations of bFGF and its receptor (FGF receptor-1) were examined by immunohistochemistry using anti-bFGF antibody and anti-FGF receptor-1 antibody, respectively. Regenerating axons extended further in the bFGF-administered segment than in the bFGF-untreated control segment. Electron microscopy showed that regenerating axons grew out unaccompanied by Schwann cells. Findings concerning angiogenesis and Schwann cell migration were very similar between the bFGF treated and control nerve segment. bFGF-immunoreactivity was not detected in the control nerve segment. In contrast, bFGF-immunoreactivity was detected on the basal lamina tubes as well as on the plasmalemma of regenerating axons facing the basal lamina in the bFGF treated nerve segment up to 5 days after administration, suggesting that exogenous bFGF can be retained in the basal lamina for several days after administration. FGF receptor was detected on the plasma membrane of regenerating axons where they abutted the basal lamina. These results indicate that bFGF could promote the extension of early regenerating axons by directly influencing the axons, but not via Schwann cells or angiogenesis.  相似文献   

17.
Clinical and histopathological factors fail to adequately predict outcomes in children with high-grade gliomas, indicating a need to identify relevant biological markers of tumor behavior to guide therapeutic decision-making. Basic fibroblast growth factor (bFGF) is a mitogenic and angiogenic factor that has been observed to be overexpressed in a significant percentage of malignant gliomas, although the prognostic significance of this expression is unknown. To address this issue, the expression status of bFGF was examined immunohistochemically in a series of 27 archival pediatric malignant non-brainstem gliomas treated consecutively at our institution between 1975 and 1992. Tumors were categorized based on expression levels, and the association between expression status and outcome was examined. Sixteen cases showed high levels of expression of bFGF, and 11 showed low levels. There was no correlation between expression status and either tumor histology, patient age, or tumor location. However, there was a significant difference in outcome between patients with high levels of bFGF immunoreactivity and those with low expression. Median progression-free survival was >66 months in the low bFGF group as compared to 6 months in the high bFGF group (P = 0.006). Median overall survival was >66 months in the low bFGF group as compared to 18 months in the high bFGF group (P = 0.03). Tumor bFGF expression seems to be strongly associated with outcome in children with high-grade gliomas and, consequently, may serve as a biological correlate of patient prognosis in conjunction with other prognostic variables.  相似文献   

18.
To assess the prevention of recanalization at embolized sites in cerebral arteriovenous malformations, the authors devised a novel embolic material, hydrogel microspheres prepared from poly(ethylene glycol) diacrylate impregnated with basic fibroblast growth factor. In this article, preparation of the microspheres, and preliminary study of in vitro and in vivo performance are discussed. Poly(ethylene glycol) diacrylate, prepared from end capping of poly(ethylene glycol) (molecular weights, 1,000, 2,000, and 4,000) with acryloyl chloride and benzophenone derived poly(ethylene glycol), prepared from poly(ethylene glycol) (molecular weight, 2,000) with benzoyl benzoic acid chloride as a photoinitiator, were dissolved in a buffer solution with or without basic fibroblast growth factor. The mixed solution was dropped stepwise into liquid paraffin with stirring. Ultraviolet light irradiation resulted in the formation of relatively rigid hydrogel microspheres (diameter, 100-400 microm). The in vitro study showed that the higher the molecular weight of poly(ethylene glycol) diacrylate used, the faster the release rate of immobilized protein. Canine kidneys were embolized with these microspheres via the femoral artery using a microcatheter. Histologic examination showed that microspheres occluded arterioles. The degree of accumulation of fibroblasts and extracellular matrix were larger for basic fibroblast growth factor impregnated microspheres than for nonimpregnated ones. Basic fibroblast growth factor released from microspheres may help regenerate tissues at arteriovenous malformation sites, and recanalization is expected to be prevented.  相似文献   

19.
Throughout life, olfactory sensory neurons are renewed from a population of dividing stem cells. Little is known about the molecular mechanisms that regulate the activation, self-renewal and differentiation of olfactory neuronal precursors; however, evidence indicates that soluble mediators may play a central role in olfactory neurogenesis. To identify molecules that regulate olfactory self-renewal and differentiation, we have recently established, cloned and propagated in vitro primary long-term cell cultures from the human fetal olfactory neuroepithelium. Here we show that primary human olfactory neuroblasts synthesize and release biologically active basic fibroblast growth factor which, in turn, supports neuroblast growth by autocrine/paracrine mechanisms. The growth-promoting activity of basic fibroblast growth factor is dose dependent and is accompanied by morphological changes of the cells and by an increase in the expression of neuronal-related genes. These observations indicate that endogenous basic fibroblast growth factor participates in controlling olfactory self-renewal and suggest that this cytokine represents a key regulatory element of olfactory neurogenesis.  相似文献   

20.
Stimulation of pheochromocytoma (PC12) cells with the mitogen epidermal growth factor (EGF) produced a rapid and robust accumulation of intracellular reactive oxygen species (ROS), an accumulation which, in other systems, has been shown to be essential for mitogenesis. Brief pretreatment of the cells with nerve growth factor (NGF) suppressed the EGF-mediated ROS increase. EGF failed to produce elevations in ROS in a PC12 variant stably expressing a dominant-negative p21(ras) construct (PC12-N17) or in cells pretreated with the MEK inhibitor PD098059. NGF failed to suppress the increase in ROS in the PC12 variant nnr5, which lacks p140(trk) receptors. The suppression of the increase in ROS by NGF was restored in nnr5 cells stably expressing p140(trk) (nnr5-trk), but NGF failed to prevent the increase in ROS in nnr cells expressing mutant p140(trk) receptors that lack binding sites for Shc and phospholipase Cgamma. Among several inhibitors of superoxide-generating enzymes, only the lipoxygenase inhibitor, nordihydroguaiaretic acid reduced EGF-mediated ROS accumulation. The inhibitory action of NGF on ROS production was mimicked by the nitric oxide donor, sodium nitroprusside, and was blocked by an inhibitor of nitric-oxide synthetase, L-nitroarginine methyl ester. These results suggest a novel mechanism for the rapid interruption of mitogenic signaling by the neurotrophin NGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号