首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsolubilization reaches its maximum when a surfactant adsorbed onto the solid–liquid interface achieves complete bilayer or maximum adsorption. The attempt to enhance the adsolubilization of organic solute is accomplished by increasing interaction between the hydrophobic core of adsorbed admicelles and the organic solute. Solubilization and adsolubilization were studied with linker-based and extended-surfactant-based systems. Extended surfactants have propylene oxide (PO) groups of intermediate polarity inserted between hydrophobic and lipophilic moieties in the surfactant molecule. This study evaluated the adsolubilization of polar (phenylethanol) and nonpolar (ethylcyclohexane) solutes into conventional linker-based and extended-surfactant-based admicelles. The results demonstrated that the extended-surfactant-based systems showed higher solubilization capacity than the conventional sodium dodecyl sulfate alone or with linker. For the polar solute, the presence of PO group has a greater effect than the number of PO groups or the tail length, while for the nonpolar solute as the number of POs groups and the tail length increased, the adsolubilization capacity also increased. Preliminary explanations for these observations are provided.
Sutha Khaodhiar (Corresponding author)Email:
  相似文献   

2.
Adsolubilization of contaminants by surfactant-modified material is an important phenomenon for surfactant-based environmental technologies. Recently, extended surfactants have been shown to enhance the adsolubilization capacity of organic solutes. In this study, two extended surfactants (ethoxy propoxylated carboxylate extended surfactant—C16PO4EO5C and propoxylate extended sulfate surfactant—C16PO4S) were selected for modifying positively charged alumina surfaces with the aim of enhancing adsolubilization of organic solutes with varying degrees of polarity (phenanthrene, styrene, and phenylethanol). The nature of the charged surface as a function of extended surfactant adsorption was evaluated through the zeta potential measurements. The results showed that at maximum bilayer coverage, the zeta potential of the alumina surface remained constant and was oppositely charged (negative) to the unmodified alumina (positive). Zeta potential measurements showed that the adsorbed bilayer of carboxylate-based extended surfactant produced more negatively charged surface. Surfactant desorption results showed that the surfactant-modified surface retained their negatively charge, albeit reduced, indicating that partial desorption occurred but not to the point that the positively charged alumina surface was realized. The adsolubilization results suggest a benefit of the ethoxy groups in adsolubilizing the polar phenylethanol in the palisade layer.  相似文献   

3.
The polarity of rhamnolipid, a relatively hydrophilic biosurfactant, can be enhanced by the addition of linker molecules. In this work, rhamnolipid biosurfactant‐modified surfaces were prepared with and without a combination of linkers (1‐butanol, 1‐octanol, and 1‐dodecanol) to investigate effects of linker molecules on styrene adsolubilization and solubilization. Results showed that styrene adsolubilization increased with increasing carbon chain lengths of the linker molecules whereas the solubilization of styrene exhibited the opposite effect. Decreasing the carbon atoms in the linker molecules resulted in higher styrene solubilization capacity because of the change in polarity of the three‐dimensional surfactant aggregates. The higher adsolubilization capacity indicated the enlargement of surfactant tails that was created a larger adsolubilization region in the admicelle while the lesser solubilization of styrene indicated the decreasing of affective area per molecule of the surfactant‐linker system (butanol > octanol > dodecanol).  相似文献   

4.
The surface properties of 5 extended surfactant C12–14P mE2S solutions in pure water and 0.1 M NaCl were investigated through surface tension and electrical conductivity measurements. The surface properties measured include the critical micelle concentration (CMC), critical surface tension (γcmc), maximum surface excess concentration (Γmax), minimum area occupied per surfactant molecule (Amin), and efficiency in surface tension reduction (pC20). The CMC values of the 5 surfactants decreased with increasing polypropylene oxide number (PON) and were higher than those obtained in 0.1 M NaCl. The Γmax values showed a downward trend whereas the Amin values exhibited an upward trend with increasing PON without NaCl. The Γmax values were higher and the Amin values were lower than those obtained without 0.1 M NaCl. The CMC values increased at elevated temperatures. The CMC values of C12–14P3E2S, C12–14P5E2S, and C12–14P8E2S were similar but were markedly lower than those of C12–14E2S at different temperatures. When PON was less than 12, the log CMC value decreased linearly with increasing PON in the absence of salt, and the relationship between pC20 and PON was linear. But in the presence of 0.1 M NaCl, the log CMC value decreased exponentially with increasing PON.  相似文献   

5.
In this study, the gemini surfactants of the alkanediyl-α-ω-bis(alkyl dimethyl ammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as “m-2-m” (m = 10, 12 and 16) and, on the other hand, with n-C16 alkyl groups and different spacers containing s carbon atoms, referred to as “16-s-16” (s = 2, 6, 10 and Ar (8)) have been synthesized, purified and characterized. The critical micelle concentration (CMC), micelle ionization degree (α) and Gibbs free energy of micellization (∆G mic) of these surfactants and the monomeric cationic surfactants DTAB and CTAB have been determined by means of electric conductivity measurements. In addition, the temperature dependence of the CMC was determined for the 10-2-10 gemini surfactant. The CMCs of the gemini surfactants are found to be much lower than those of the corresponding monomeric surfactants and the effect of the hydrophobic alkyl chain length is more important than that of the spacer. The CMC of 16-s-16 passes through a maximum of (or around) s = 6 and then decreases for s = 10. The presence of a maximum CMC is explained by the contribution of a change of conformation of the surfactant with increasing spacer chain length. The changes of α with s and m are found qualitatively similar to those found for CMC values. The values of ∆G mic are more negative for the dimers than for the monomers and also change with an increasing spacer carbon number, as CMC values do. The thermodynamic parameters of micellization indicate that the micellization of 10-2-10 is enthalpy driven.  相似文献   

6.
This present article employs four anionic Gemini surfactants with different spacer groups and investigates their physicochemical and aggregation properties. The critical micelle concentration (CMC), surface tension at CMC (γCMC) and C 20 of these surfactants have been investigated using the du Nouy ring method. The aggregation number (N) was determined with intrinsic fluorescence quenching method using pyrene as a fluorescence probe and benzophenone as a quencher. Results show that these anionic Gemini surfactants have lower CMC and C 20 values compared with those conventional ones and show higher surface activity. As expected, the spacer plays an important role in the aggregation properties of Gemini surfactants. Under experimental conditions, Gemini B–D with an alkoxylated group as spacer has a lower CMC and a higher aggregation number than Gemini A with methylene as spacer. For Gemini B–D, the CMC and aggregation number values decrease with the increasing flexible spacer length. The micropolarity also affects the aggregation of the present anionic Gemini surfactants. The micropolarity of micelle becomes low when the concentration of surfactants increases. Aggregation numbers of surfactants increase and fluorescence intensities decrease with the increasing concentration of NaCl. These results will help us to understand the relationship between the architectures of Gemini surfactants and their various properties in aqueous solution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Yuping WeiEmail:
  相似文献   

7.
A series of novel cationic surfactants were synthesized from the quaternization of triethyl amine and various long chain alkyl halide. The chemical structure of the prepared compounds was confirmed using elemental analysis, FTIR and 1H-NMR spectra. The physical properties of the synthesized surfactants including, electrical conductivity, critical micelle concentration, (CMC) and the degree of ionization of the micelle, (β) were studied. The thermodynamic parameters of micelle formation, standard free energy ΔG m°, enthalpy ΔH m°, and entropy ΔS m° were calculated. The results of the surface parameter determination were correlated with their chemical structures. It was found that the hydrocarbon chain length is the main factor which has an effect on the value of the thermodynamic parameters.
I. AiadEmail:
  相似文献   

8.
Four fluorinated cationic surfactants were prepared by condensing 2,2,3,3, tetrafluoro-1-propyl chloroacetate with stoichiometric amounts of pyridine, 2-hydroxypyridine, 8-hydroxyquinoline and 8-hydroxyquinaldine to produce four quaternary ammonium salts. The surface and biocidal properties of these surfactants were investigated. Surface properties of their solutions including surface tension, critical micelle concentration (CMC), effectiveness (Πcmc), maximum surface excess (Γmax) and minimum surface area (A min) were investigated with respect to different concentrations at 25 °C. Standard free energies of micellization and adsorption of the prepared surfactants in the aqueous solution were studied. The biocidal activity was determined via the inhibition zone diameter of prepared compounds which tested against six strains as a representative group of microorganisms.
M. Z. MohamedEmail:
  相似文献   

9.
In this article, we report the salt effect on interaction of a water-soluble polymer hydroxypropylmethyl cellulose (HPMC) with the cationic Gemini surfactant (ethane-1, 2-diyl bis(N,N-dimethyl-N-hexadecylammoniumacetoxy) dichloride, 16-E2-16), and also its monomeric counterpart cetyltrimethylammonium chloride (CTAC) using the tensiometric method. Surface tension of the amphiphiles diminished in the presence of the polymer as well as salts; eventually, the polymer gets saturated with the surfactant and there is no further change of surface tension of the solution. Interaction between the polymer and surfactant starts at the critical aggregation concentration (CAC) that is stronger for 16-E2-16 than CTAC. CAC and critical micelle concentration (CMC) values of the surfactant-polymer binary mixtures at various concentrations of the polymer were determined. CAC as well as CMC of 16-E2-16 are considerably lower than CTAC. The inorganic salts (KCl and KBr) have a considerable influence on the polymer–surfactant interaction.  相似文献   

10.
A series of novel cationic gemini surfactants, namely 1,3-adamantanedicarboxylic acid bis(alkyldimethyl-3-ammoniopropyl amide) dibromide designated as [Ad-2(amC n )] (n = 12, 14, 16), containing adamantane, two amide groups, and two hydrocarbon chains, were synthesized from 1,3-adamantanedicarboxylic acid. The surface-active properties of the surfactants were investigated through surface tension and electrical conductivity measurement. A series of thermodynamic parameters such as standard free energy \(\left( {\Delta G^\circ_{\text{m}} } \right)\) , enthalpy \(\left( {\Delta H^\circ_{\text{m}} } \right)\) , and entropy \(\left( {\Delta S^\circ_{\text{m}} } \right)\) of micellization were evaluated from electrical conductivity measurements in the temperature range from 288 to 308 K. The micellization for [Ad-2(amC n )] is entropy-driven at low temperature and enthalpy-driven at high temperature. Further, the antimicrobial activity of the synthesized gemini surfactants against both Gram-positive and Gram-negative bacteria was also investigated, and this study showed that the compound [Ad-2(amC12)] has excellent antibacterial activity against all studied bacteria.  相似文献   

11.
In this article we show steps taken toward the development of bactericidal and fungicidal synthetic cationic surfactants by the reaction of decyl, dodecyl or tetradecyl amine with selenious acid to produce a series of quaternary ammonium salts which consequently converted to copper and cobalt cationic complexes via complexing them with copper (II) or cobalt (II) ions. Surface properties of these surfactants were investigated. The surface properties studies included critical micelle concentration (CMC), maximum surface excess (Γmax) and minimum surface area (A min). Free energy of micellization ( ) and adsorption () were calculated. The antimicrobial activity was determined via the inhibition zone diameter of the prepared compounds measured against five strains of a representative group of microorganisms. FTIR spectra, elemental analyses and 1 H-NMR spectra were obtained to insure the purity of the prepared compounds
M. Z. Mohamed (Corresponding author)Email:
  相似文献   

12.
A novel homologous series of trimeric anionic surfactants, 3CnTE3CNa (where n is a fatty acid chain length of 7, 10, or 12), with three hydrocarbon chains and three carboxylate heads connected via tri‐etheric bonds were synthesized from long‐chain α‐bromo fatty acids and a triol, 1,1,1‐tris(hydroxymethyl)ethane. The obtained trimeric carboxylic acids were esterified and purified by silica gel column chromatography, then hydrolyzed with dilute sodium hydroxide solution to form a series of trimeric carboxylate surfactant products. All prepared compounds were analyzed by IR, 1H NMR, and 13C NMR spectroscopy to confirm their chemical structures. Their surface‐active properties were investigated. The critical micelle concentrations (cmc) of 3CnTE3CNa were in the range of 0.12–0.71 mmol/L, and the surface tensions at the cmc (γcmc) were 29.3–34.8 mN/m.  相似文献   

13.
A series of cetyl alcohol based anionic bis‐sulfosuccinate gemini surfactants (BSGSCA1,4; BSGSCA1,6 and BSGSCA1,8) with different spacer lengths was prepared using dibromoalkanes. The surfactant structure was elucidated using elemental analysis, Fourier transform infrared spectroscopy (FT‐IR) and nuclear magnetic resonance spectroscopy (NMR). Surface tension measurements were used to determine the critical micelle concentration (CMC), the surface tension at the CMC (γCMC), surface pressure at the CMC (πCMC) and efficiency of adsorption (pC20). On the basis of surface studies, the CMC and γCMC decreases with increasing length of the spacer group. The micelle aggregation number, determined by fluorescence quenching studies, increases with increasing surfactant concentration above the CMC. The micropolarity in the micelle increases with increasing length of the spacer and decreases with increasing surfactant concentration.  相似文献   

14.
A series of novel cationic gemini surfactants were synthesized from corresponding amido-amines in a single step reaction. The amido-amines were obtained from long chain carboxylic acids and 3-N,N-dimethylamino-1-propyl-amine with excellent isolated yield (up to 95 %). All the synthesized quaternary ammonium compounds (QACs) were further investigated for surface active properties. The critical micelle concentration (CMC) and the effectiveness of surface tension reduction were determined. The surface tension measurements of newly synthesized gemini surfactants showed good water solubility, and low CMC values, had great efficiency in lowering the surface tension and a strong adsorption at the air/water interface than the corresponding monomeric surfactants. Further, the antibacterial activity of the synthesized QACs against both Gram-positive and Gram-negative bacteria was also investigated.  相似文献   

15.
Four cationic gemini surfactants featuring semi-rigid spacers were synthesized via a two-step process. The surface-active properties of these surfactants were investigated through surface tension and electrical conductivity measurement. The thermodynamic parameters of micellization were evaluated from electrical conductivity measurements at temperatures ranging from 293 to 313 K. The aggregation behavior of these synthesized gemini surfactants in water were investigated using dynamic light scattering and transmission electron microscopy. Further, the antimicrobial activities of these synthesized gemini surfactants against both Gram-positive and Gram-negative bacteria were also investigated.  相似文献   

16.
合成了一系列不同聚合度的聚烷基酚聚氧乙烯醚(HHL)型非离子表面活性剂。通过红外光谱,核磁共振等仪器对其结构进行表征,用表面张力法对不同聚合度的合成产物的表面性能进行研究,并对不同聚合度的表面活性剂的物理化学参数进行理论分析。结果表明:三聚烷基酚聚氧乙烯醚型非离子表面活性剂较相应单体的烷基酚聚氧乙烯醚表面活性剂,表面活性和吸附能力有较大的提升。  相似文献   

17.
In this study, steps were taken toward the development of bactericidal and fungicidal synthetic cationic surfactants by reacting decyl, dodecyl or tetradecyl amine with acetic or hydrochloric acid to produce a series of amine salts which consequently converted to copper or cobalt cationic complexes via complexing the first series compounds with copper (II) or cobalt (II) ions. Surface properties such as interfacial tension and emulsifying power of these surfactants were investigated. The surface parameters including critical micelle concentration (CMC), maximum surface excess (Γmax) and minimum surface area (A min) were studied. Free energy of micellization (ΔG°mic) and adsorption (ΔG°ads) were calculated. The antimicrobial activity was determined via the inhibition zone diameter of the prepared compounds, which measured against five strains of a representative group of microorganisms. FTIR spectra, elemental analysis and H1 NMR spectrum were performed to confirm compound structure and purity.
M. Z. MohamedEmail:
  相似文献   

18.
abstract This study deals with the enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) such as phenan-threne (PHE) and fluorene (FLR) in a pure cationic gemini (G6) and three conventiona...  相似文献   

19.
Three novel thiourea‐based non‐ionic surfactants, 3‐decanoyl‐1,1‐diphenylthiourea, 3‐dodecanoyl‐1,1‐diphenylthiourea and 1,1‐diphenyl‐3‐tetradecanoylthiourea were synthesized from carbonyl chlorides, potassium thiocyanate and amines in high yield. The synthesized compounds were characterized by different techniques like 1H NMR, 13C NMR, FTIR and UV‐Visible spectrophotometry. These surfactants are soluble in nonpolar and polar organic solvents and resist solubility in water due to the presence of thiourea group. Electronic absorption spectroscopy was used to evaluate their critical micelle concentration (CMC) in different solvents. The CMC was found to decrease with increase in hydrophobic carbon chain length as expected. Moreover, the effect of pH on their spectral transition was investigated and the two peaks were found to merge in highly alkaline conditions.  相似文献   

20.
Three fluorinated cationic surfactants were prepared by condensing N-(2-bromoethyl)perfluoroalkylamides with stoichiometric amounts of pyridine, triethanolamine, and triethylamine to produce three quaternary ammonium salts. The surface and biocidal properties of these surfactants were investigated to find the relation between the structure of the hydrophilic portion of the compounds and their efficiency as biocides. The properties studied included critical micelle concentration (CMC), effectiveness (IICMC), surface excess concentration (Tmax), and area occupied by a molecule (Amin). Free energies of micellization (ΔG mic o) and adsorption (ΔG ads o) of the surfactants in aqueous solution were calculated. The minimal inhibitory concentrations of the prepared compounds were tested against five strains as representative group of microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号