首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Catecholamine uptake blockers exhibit a second action: They suppress the potassium (K+)-stimulated release of [3H]-dopamine (DA) from rat striatal tissue in vitro. In the present study, a K+ dose-response curve was obtained for the release of both [3H]-DA and endogenous DA from striatal tissue, in the absence and presence of catecholamine uptake blockers. Three drugs were used, namely, mazindol, nomifensine, and desmethylimipramine. The data showed that diminished release in the presence of mazindol or nomifensine was dependent upon the concentration of K+. Marked inhibition of stimulus-induced release of either 3H-DA or endogenous DA was observed at low concentrations of K+ (15 and 20 mM), but not at higher concentrations of K+ (40 and 60 mM). In contrast, the diminished release of DA in the presence of desmethylimipramine persisted over the K+ range of 20-60 mM. These data show that the drug action observed previously was not restricted to a specific neuronal pool of DA that was labelled with [3H]-DA. Further, the data emphasize the importance of the concentration of the depolarizing stimulus when evaluating the effects of drugs on release of catecholamines.  相似文献   

2.
We intended to determine whether the effect of neurotensin (NT) on K+ and electrically evoked [3H]dopamine (DA) release from rat and guinea-pig striatal slices involved different mechanisms and/or receptors. In the two species, NT and three NT agonists were found to exhibit different relative potencies to enhance K+- and electrically-evoked [3H]DA release. NT(1-13) increased [3H]DA release with EC50 values in the nanomolar range and Emax values in the range of 100% of control. NT(8-13) and Eisai hexapeptide were both as active as NT(1-13) under K+ depolarization, but did not exceed 40% of the NT(1-13) effect under electrical depolarization. In rats, when [3H]DA release was stimulated with two successive K+ depolarizations, in the presence of NT(1-13), the NT effect during the second exposure to K+ was drastically decreased, suggesting that the NT receptor was desensitized. The desensitization process was essentially observed on Emax values, EC50 values being weakly affected. Similar results were obtained in guinea pig. In contrast, with two electrical depolarizations or with two different depolarizations (K+ followed by electrical), the NT effect during the second depolarization was not significantly affected. Concerning NT antagonists, SR 48692 antagonized with IC50 values in the nanomolar range the NT(1-13) stimulated K+-evoked [3H]DA release but did not affect, up to 10(-6) M, the NT(1-13) enhancement of electrically stimulated [3H]DA release. On the contrary, SR 142948A antagonized the NT(1-13) effect on K+- and electrically-evoked [3H]DA release. In conclusion, these results suggest the possible existence of potentially distinct neurotensin receptors differentially involved in the control exerted by NT on DA release under KCl vs electrical depolarization.  相似文献   

3.
Ketamine is known to increase arterial pressure and heart rate with its sympathomimetic action. However, it also relaxes vascular smooth muscle and causes hypotension. We studied such a bipartite effect in terms of ketamine induced changes of dopamine (DA) release from rat pheochromocytoma (PC-12) cells as a model of sympathetic nervous system. Without KCl stimulation, ketamine increased the DA release from PC-12 cells in a dose-related fashion (10(-4)M: 2.6 +/- 0.4, 10(-3)M : 7.5 +/- 0.3, 10(-2)M: 27.1 +/- 3.2%). The similar increase of DA release was observed with absence of extracellular Ca2+. Exposure of KCl (50 mM) to PC-12 cells increased the DA efflux from 1.7 +/- 0.4 to 14.2 +/- 0.8% (P < 0.001). The release of DA stimulated by KCl (50 mM) was reduced to 9.0 +/- 1.0% and 11.4 +/- 0.3% in the presence of ketamine 5 x 10(-4)M and 10(-3)M respectively, and increased with the ketamine concentration of 10(-3)M. These findings indicate that ketamine depresses DA efflux related to membrane depolarization (K+) but it promotes a number of spontaneous DA efflux.  相似文献   

4.
The NMDA-evoked acetylcholine release from striatal slices and synaptosomes was investigated in rats subjected to unilateral injection of 6-hydroxydopamine into the substantia nigra. In slices prepared from the striatum contralateral to the lesion, the NMDA-evoked endogenous acetylcholine release was not significant at 10 microM NMDA and maximal at 100 microM NMDA (124 +/- 19%). Conversely, in slices taken from the dopamine-depleted striatum, NMDA was effective even at 10 microM (41 +/- 4%), and at 100 microM (196 +/- 24%) efficacy was nearly doubled. In synaptosomes prepared from the contralateral striatum, NMDA maximally stimulated 20 mM KCl-induced endogenous acetylcholine release at 1 microM (66 +/- 5.1%), with lower concentrations (0.01-0.1 microM) being ineffective. Conversely, in synaptosomes prepared from the dopamine-depleted striatum, NMDA maximally enhanced the K+/--evoked acetylcholine release at 0.1 microM (118 +/- 12.4%). Concentration-response curves of NMDA-evoked acetylcholine release in sham-operated rats could be superimposed on those observed in the contralateral striatum of the 6-hydroxydopamine-lesioned animals. The present data support the view of an increased glutamatergic regulation of striatal acetylcholine release via pre- and postsynaptic NMDA receptors during Parkinson's disease.  相似文献   

5.
Exogenous and endogenous glutamate has been shown to evoke dopamine (DA) release in the striatum using both in vitro and in vivo techniques. We hypothesized that stimulation of the prefrontal cortex (PFC) would phasically enhance striatal DA release via the glutamatergic corticostriatal pathway. To test this hypothesis, in vivo brain microdialysis was employed to measure extracellular concentrations of DA in the striatum during electrical stimulation of the PFC. Five rats were implanted with bilateral electrodes located in the medial PFC and dialysis probes in the dorsal striatum. Two days later the PFC of these awake, freely moving rats was stimulated first at 50 microA and then at 100 microA for 20 minutes at 2-hour intervals. Both currents significantly increased DA release. Extracellular DA rose rapidly during stimulation, peaked immediately afterward, and then slowly returned to baseline values. Dopamine reached 118% of baseline values with 50 microA stimulation and 138% with 100 microA stimulation. Histologic analysis using the fluorescent retrograde dye Fluoro Gold confirmed that cells projecting to the vicinity of the striatal dialysis probe originated in the vicinity of the PFC electrodes. These results provide direct evidence for phasic, excitatory modulation of striatal DA release by the PFC.  相似文献   

6.
Effects of N-methyl-D-aspartate (NMDA) and potassium on 5-day-old rat's brain were examined. We measured extracellular striatal monoamines such as dopamine (DA), 3,4 dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) using intracerebral microdialysis. After 3 h stabilization, pups received varying concentrations of NMDA (1-3 mM) and potassium (200-800 mM) by intrastriatal perfusion for 32 minutes. Increasing the concentration of NMDA and potassium induced a dose related DA increase (p < 0.001), whereas DOPAC, HVA, and 5-HIAA decreased significantly. Five days later the same animals were sacrificed and the weight reduction of their cerebral hemispheres was measured. The weight of the drug perfused side was significantly reduced compared with that of the contralateral one. We examined next the relationship between the level of maximum DA and the relative hemisphere weight reduction. The DA peak was highly correlated with the hemisphere weight reduction (r = 0.70, n = 52, p < 0.001 in the NMDA group, r = 0.83, n = 30, p < 0.001 in the potassium group, respectively). These data show that each treatment alter striatal monoamine metabolism in immature rat brain and that the extracellular DA peak is a potential early indicator to estimate brain injury.  相似文献   

7.
The participation of N-methyl-d-aspartate (NMDA) receptors on dopamine (DA) efflux in the striatum of anaesthetized rats, which had their DA nigrostriatal pathway previously lesioned with different doses of 6-hydroxydopamine (6-OH-DA), was assessed by in vivo microdialysis methodology. In addition, the in vivo basal DA and dihydroxy-phenyl-acetic acid (DOPAC) effluxes and the effect of local K+-depolarization on DA release were also evaluated in the striatum of these 6-OH-DA treated rats. Lesioned rats were divided in three groups corresponding to animals with 25-75%, 75-95% and >95% of striatum tissue DA depletion, respectively. Striatal DA tissue depletion between 25-75% occurred in parallel with a 30% reduction in DA extracellular levels, with a moderate 10% increase in basal fractional DA efflux, and with no statistical changes in the fractional DA efflux induced by NMDA (500 microM) receptor stimulation by reverse dialysis. Rats with higher DA tissue depletion (between 75-95%) exhibited a 60% reduction in DA extracellular levels in the striatum and this reduction occurred in parallel with a modest rise in basal fractional DA efflux, but with a striking decrease in the NMDA-induced fractional DA efflux. In rats with extreme or >95% of striatal DA tissue depletion, basal fractional DA efflux in the striatum increased quite substantially along with a recovery in the ability of NMDA receptor stimulation to induce fractional DA release. The >95% striatal DA-depleted rats also exhibited a significant decrease in tissue and extracellular DOPAC/DA ratio when compared to sham and partially DA-depleted rats. In contrast to the previous results, fractional DA efflux induced by reverse dialysis with K+ (40 mM) remained the same in the striatum of sham and all groups of DA-tissue depleted rats. The present findings suggest the existence of at least three features associated to the regulation of basal and NMDA-induced extracellular levels of DA in the striatum of rats as a function of striatal tissue DA depletion produced by 6-OH-DA. They also support the view that a differential regulation of basal and NMDA-induced DA extracellular levels occur in partial and extreme DA-depleted striatum after 6-OH-DA treatment. Such findings may have implications as regard to the participation of the NMDA receptor in the compensatory mechanisms associated to the progress of Parkinson's disease, as well as in the therapeutic treatment of this neurological disorder.  相似文献   

8.
Somatodendritic dopamine (DA) release from neurons of the midbrain represents a nonclassical form of neuronal signaling. We assessed characteristics of DA release during electrical stimulation of the substantia nigra pars compacta (SNc) in guinea pig midbrain slices. With the use of parameters optimized for this region, we compared stimulus-induced increases in extracellular DA concentration ([DA]o) in medial and lateral SNc, ventral tegmental area (VTA), and dorsal striatum in vitro. DA release was monitored directly with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. Detection of DA in SNc was confirmed by electrochemical, pharmacological, and anatomic criteria. Voltammograms of the released substance had the same peak potentials as those of DA obtained during in vitro calibration, but different from those of the indoleamine 5-hydroxytryptamine. Similar voltammograms were also obtained in the DA-rich striatum during local electrical stimulation. Contribution from the DA metabolite 3,4-dihydroxyphenylacetic acid to somatodendritic release was negligible, as indicated by the lack of effect of the monoamine oxidase inhibitor pargyline (20 microM) on the signal. Lastly, DA voltammograms could only be elicited in regions that were subsequently determined to be positive for tyrosine hydroxylase immunoreactivity (TH-ir). The frequency dependence of stimulated DA release in SNc was determined over a range of 1-50 Hz, with a constant duration of 10 s. Release was frequency dependent up to 10 Hz, with no further increase at higher frequencies. Stimulation at 10 Hz was used in all subsequent experiments. With this paradigm, DA release in SNc was tetrodotoxin insensitive, but strongly Ca2+ dependent. Stimulated [DA]o in the midbrain was also site specific. At the midcaudal level examined, DA efflux was significantly greater in VTA (1.04 +/- 0.05 microM, mean +/- SE) than in medial SNc (0.52 +/- 0.05 microM), which in turn was higher than in lateral SNc (0.35 +/- 0.03 microM). This pattern followed the apparent density of TH-ir, which was also VTA > medial SNc > lateral SNc. This report has introduced a new paradigm for the study of somatodendritic DA release. Voltammetric recording with electrodes of 2-4 microns tip diameter permitted highly localized, direct detection of endogenous DA. The Ca2+ dependence of stimulated release indicated that the process was physiologically relevant. Moreover, the findings that somatodendritic release was frequency dependent across a range characteristic of DA cell firing rates and that stimulated [DA]o varied markedly among DA cell body regions have important implications for how dendritically released DA may function in the physiology and pathophysiology of substantia nigra and VTA.  相似文献   

9.
The present study explored the role of different sub-types of voltage-activated Ca2+ channels (VACCs) in mediating veratridine-evoked [3H]dopamine (DA) release from rat striatal slices. The release of [3H]DA evoked by veratridine (25 microM) decreased by 50.6+/-2.9% (n=8) in the absence of calcium and was completely abolished by 1 microM tetrodotoxin. The L-type Ca2+ channel blockers nifedipine (10 microM), nitrendipine (10 microM), diltiazem (10 microM) and verapamil (10 microM) did not modulate this release. Similarly, [3H]DA release was affected neither by the N-type VACC blocker omega-conotoxin-GVIA (1 microM) nor by the selective P-type channel blockers omega-agatoxin-IVA and omega-agatoxin-TK at low nM concentrations (30 nM), indicating no involvement of N- and P-type Ca2+ channels. In contrast, higher concentrations of omega-agatoxin-IVA that would also inhibit Q-type VACCs, blocked the release of [3H]DA by 27.9+/-8.1% (n=5) and 37.5+/-13.6% (n=3) at 0.3 and 1 microM, respectively. In addition, application of the Q-type Ca2+ channel blocker omega-conotoxin-MVIIC (0.01-3 degrees M) reduced [3H]DA release in a concentration-dependent manner, with maximum inhibition of 35.3+/-4.1% at 3 microM (n=5). On the basis of these results, it is concluded that the Ca2+ channels that participate in veratridine-evoked [3H]DA release are Q-type Ca2+ channels.  相似文献   

10.
Based upon the observation that estrogen acts in the striatum to rapidly modulate dopamine (DA) neural transmission and DA-mediated behaviors, it has been postulated that these effects of estrogen are mediated by a specific, membrane-bound receptor mechanism. To further characterize the pharmacological specificity of the estrogen binding site, the present experiments examine effects of various estrogen agonists on amphetamine (AMPH)-induced DA release from striatal tissue of ovariectomized female rats, using a superfusion method. Catechol estrogens 4-, and 2-hydroxyestradiol, but not 2-methoxyestradiol, significantly enhance AMPH-induced striatal DA release. Estrogen metabolites, estrone and estriol, and the non-steroidal estrogen analog, diethylstilbestrol, are without effects. Estradiol conjugated to bovine serum albumin (BSA) mimics the effect of estradiol to enhance stimulated striatal DA release. These results indicate that the steroidal configuration and hydroxylation on the A-ring of estrogenic compounds may be important determinants of ligand binding to the putative estrogen binding site in the striatum. Furthermore, the effectiveness of the estradiol conjugated to BSA reinforces the idea of an external membrane-bound receptor binding site in the striatum.  相似文献   

11.
Repeated daily intraperitoneal (i.p.) administrations of cadmium (CdCl2, 1 mg/kg per day for 5 days) increased striatal dopamine (DA) release (180% of controls) and turnover (150% of controls) in 13-day-old rats. Cd treatment also increased striatal metallothionein (MT) content (161%), Cd (127%) and lipid peroxidation (LPO, 190%). In addition, Cd treatment decreased striatal tyrosine hydroxylase (TH) activity (-28%), and such an effect may result from D-2 receptor blockade as a consequence of excessive dopamine release, since sulpiride (a specific D-2 receptor antagonist) administration to Cd-treated rats abolished the effect of Cd on TH. No effect was observed on striatal monoamine oxidase (MAO) activity. Dexamethasone (Dx) treatment increased striatal MT content and caused no effect on either DA release or turnover. However, Dx administration prevented the effects caused by Cd, including the increased DA release and enhanced striatal lipid peroxidation. These results indicate that toxic effects on the brain are to be expected as a result of Cd exposure and that Dx administration can attenuate them.  相似文献   

12.
Acting as a substrate at the serotonin (5-HT) transporter, (+)-MDMA (3,4-methylenedioxymethamphetamine), is a potent releaser of 5-HT and causes toxicity to 5-HT neurons after repeated exposure. (+)-MDMA also releases dopamine (DA), although with less potency. Since we have shown previously that the intrastriatal application of 5-HT facilities DA release, it was hypothesized that increased release of striatal 5-HT after MDMA may influence extracellular levels of DA. Using microdialysis in vivo, we found that (+)-MDMA (4.7 mumol/kg, i.v.) administration increased extracellular striatal DA levels to 501% of control (p < 0.01, n = 12). However, in the presence of fluoxetine (14.4 mumol/kg, s.c.), which prevents (+)-MDMA effects on 5-HT release, the (+)-MDMA-induced increase in DA was significantly less (to 375% of control, p < 0.05, vs. no fluoxetine, n = 8). In vitro studies with striatal slices, to test drug selectivity, showed that (+)-MDMA (0.3-3 microM) increased extracellular levels of both DA and 5-HT in a dose-dependent manner. Fluoxetine (3 microM) completely blocked the effects of (+)-MDMA on 5-HT release, but did not alter (+)-MDMA-induced DA release in vitro. The selective DA transport inhibitor GBR-12909 (1 microM), blocked (+)-MDMA's effect on DA release. It is concluded that 5-HT release after (+)-MDMA treatment partially contributes to (+)-MDMA's effect on DA release in vivo.  相似文献   

13.
A growing body of evidence suggests that an interference with dopamine (DA) transmission disrupts maternal behavior in the rat. The present brain microdialysis study was therefore conducted to investigate whether infants can modulate ventral striatal DA release in mother rats. There was a significant rise in the extracellular concentrations DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in the ventral striatum when mothers were reunited with their litters following separation overnight. Nursing was the predominant behavior during this phase of the experiment. More active behaviors were elicited by soiling pups with flowerpot earth, and this was accompanied by further increases in DA, DOPAC, HVA, and 5-HIAA. It is suggested that pup-induced stimulation of ventral striatal DA release facilitates parental responses such as pup retrieval.  相似文献   

14.
The technique of intracranial microdialysis was used to investigate the effects of aging on the striatal dopaminergic system of the anesthetized Fischer 344 rat. Microdialysis probes were implanted into the striatum of young (2-8 months) and aged (24-28 months) urethane anesthetized rats. Striatal dialysate levels were analyzed for dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and serotonin (5-HT) by high performance liquid chromatography with electrochemical detection. As compared to the young animals, basal extracellular levels of DA and DOPAC were significantly decreased in two groups of aged animals. Stimulation with excess potassium added through the microdialysis probe produced a robust overflow of DA in the young and aged rat striatum, but the evoked overflow of DA was not diminished in the aged rat striatum as compared to young animals. In contrast, d-amphetamine-evoked overflow of DA was again robust in young and aged animals, but was greatly decreased in the aged rat striatum as compared to the signals recorded in the young rats. Taken together with previous reports, these data support the hypothesis that a major change in the regulation of DA release that occurs in aging involves changes in the function of the neuronal uptake of DA, which may be a compensatory property of DA neurons in senescence.  相似文献   

15.
Iodine-123-beta-CIT has been used as a probe of dopamine transporters in Parkinson's disease patients using SPECT. We studied the test/retest reproducibility of SPECT measures in Parkinson's disease patients and healthy controls obtained after injection of [123I])beta-CIT in part to assess the utility of this tracer for longitudinal evaluation of striatal dopamine transporters as a marker of disease progression. METHODS: Seven Parkinson's disease patients and seven healthy control subjects participated in two [123I]beta-CIT SPECT scans separated by 7-21 days. Subjects were imaged at 24 hr post injection of 360 MBq (9.7 mCi) of [123I]beta-CIT. Two outcome measures were evaluated; 1) the ratio of specific striatal (activity associated with DA transporter binding) to nondisplaceable uptake, also designated V3," and 2) the total specific striatal uptake (%SSU) expressed as a percentage of injected radiotracer dose. For both measures, test/retest variability was calculated as the absolute difference of test minus retest divided by the mean of test/retest and expressed as a percent. In addition, the reproducibility of left and right striatal asymmetry and putamen:caudate ratios were determined. RESULTS: The two outcome measures demonstrated excellent test/retest reproducibility for both the Parkinson's disease and healthy subject groups with variability of striatal V3" = 16.8 +/- 13.3% and percent striatal uptake = 6.8 +/- 3.4% for Parkinson's disease patients and V3" = 12.8 +/- 8.9% and %SSU = 7.0 +/- 3.9% for control subjects. There were no statistically significant differences in test/retest variability between control subjects and Parkinson's disease patients for either outcome measure. The reproducibility of left/right asymmetry indices and putamen-to-caudate ratios showed no patient versus control subject differences. The asymmetry index had greater test/retest variability than the other outcome measures. CONCLUSION: These data suggest that SPECT imaging performed at 24 hr postinjection of [123I]beta-CIT permits calculation of reliable and reproducible measures of dopamine transporters in both Parkinson's disease patients and control subjects and supports the feasibility of using [123I]beta-CIT in the evaluation of disease progression in Parkinson's disease.  相似文献   

16.
Amphetamine (AMPH) inhibits uptake and causes release of dopamine (DA) from presynaptic terminals. AMPH can act on both vesicular storage of DA and directly on the dopamine transporter (DAT). To assess the relative importance of these two processes, we have examined the releasing actions of AMPH in mice with a genetic deletion of the DAT. The sequence of actions of AMPH has been determined by following the real time changes of DA in the extracellular fluid of intact tissue with fast scan cyclic voltammetry. In striatal slices from wild-type mice, AMPH causes a gradual (approximately 30 min) increase in extracellular DA, with a concomitant disappearance of the pool of DA available for depolarization-evoked release. Conversely, in slices from mice lacking the DAT, although a similar disappearance of electrically stimulated DA release occurs, extracellular DA does not increase. Similarly, microdialysis measurements of DA after AMPH in freely moving animals show no change in mice lacking the DAT, whereas it increases 10-fold in wild-type mice. In contrast, redistribution of DA from vesicles to the cytoplasm by the use of a reserpine-like compound, Ro4-1284, does not increase extracellular DA in slices from wild-type animals; however, subsequent addition of AMPH induces rapid (<5 min) release of DA. Thus, the DAT is required for the releasing action, but not the vesicle-depleting action, of AMPH on DA neurons, and the latter represents the rate-limiting step in the effects of AMPH. Furthermore, these findings suggest that in the absence of pharmacological manipulation, such as the use of amphetamine, endogenous cytoplasmic DA normally does not reach sufficient concentrations to reverse the DAT.  相似文献   

17.
Lobeline is currently being developed as a substitution therapy for tobacco smoking cessation. Activation of CNS dopamine (DA) systems results in the reinforcing properties of nicotine. The present study compared the effects of lobeline and nicotine on rat striatum. Both lobeline and nicotine evoked [3H]overflow from striatal slices superfused in the presence of pargyline and nomifensine in the buffer. Marked DA depletion (42-67%) and a concomitant 2-fold increase in dihydroxyphenylacetic acid (DOPAC) in slices superfused with high concentrations (30-100 microM) of lobeline were observed. The effect of nicotine (10 microM) was inhibited in a concentration-dependent manner by mecamylamine (1-100 microM). However, lobeline (0.1-100 microM)-evoked [3H]overflow was calcium-independent, and was not antagonized by mecamylamine (1-100 microM), suggesting a mechanism of action other than stimulation of nicotinic receptors. Lobeline inhibited [3H]DA uptake into synaptosomes (IC50 = 80 +/- 12 microM) and vesicles (IC50 = 0.88 +/- 0.001 microM), whereas nicotine (< or =100 microM) did not inhibit synaptosomal or vesicular [3H]DA uptake. In the absence of pargyline and nomifensine in the buffer, endogenous DA was detected in superfusate only in those slices exposed to the highest concentration (100 microM) of lobeline. However, endogenous DOPAC concentration was increased in a concentration-dependent manner, indicating that lobeline exposure resulted in increased cytosolic DA which was rapidly metabolized to DOPAC. Under these conditions, lobeline (10-100 microM) also significantly depleted (66-85%) DA content; however, no change in DOPAC content was observed. The results suggest that, unlike nicotine, lobeline increases DA release by potent inhibition of DA uptake into synaptic vesicles, and a subsequent alteration in presynaptic DA storage.  相似文献   

18.
High pressure is known as a basic etiological factor underlying central nervous system changes known as the high pressure neurological syndrome (HPNS). In the rat, HPNS includes behavioural disturbances including locomotor and motor hyperactivities (LMA) linked to a striatal dopamine (DA) increase. Recent findings have shown that intracerebroventricular administration of 5-HT3 or 5-HT1b antagonists decrease both LMA and striatal DA increase suggesting that pressure could enhance the serotonin (5-HT) neurotransmission. In this study, for the first time, the striatal levels of DA and 5-HT were simultaneously monitored using microdialysis in free-moving rats exposed to high pressure. Our results show that the striatal 5-HT level increases during pressure exposure. These data suggest that pressure-induced striatal 5-HT increase could participate in the increasing DA release. Nevertheless, the lack of correlation between striatal DA and 5-HT changes suggests that other processes are involved in the pressure-induced striatal DA increase.  相似文献   

19.
In the present study, we used dual-probe microdialysis to investigate the effects of intrastriatal perfusion with neurotensin (NT) on striatal and pallidal glutamate and GABA release. The role of the pallidal GABAA receptor in the intrastriatal NT-induced increase in pallidal glutamate release was also investigated. Intrastriatal NT (100 and 300 nM) increased striatal glutamate and GABA (100 nM, 155 +/- 9 and 141 +/- 6%, respectively; 300 nM, 179 +/- 8 and 166 +/- 11%, respectively) release, as well as pallidal glutamate and GABA (100 nM, 144 +/- 8 and 130 +/- 5%; 300 nM, 169 +/- 9 and 157 +/- 8%, respectively) release. These effects were dose-dependently antagonized by the NT receptor antagonist 2-[(1-(7-chloro-4-quinolinyl)-5-(2, 6-dimethoxy-phenyl)pyrazol-3-yl)carboxylamino]tricyclo)3.3.1 .1.3. 7)-decan-2-carboxylic acid (SR48692). Intrasubthalamic injection of the GABAA receptor antagonist (-)-bicuculline (10 pmol/100 nl, 30 sec) rapidly increased pallidal glutamate release, whereas the intrastriatal NT-induced increase in pallidal glutamate release was counteracted by intrapallidal perfusion with (-)-bicuculline, suggesting that an increase in striopallidal GABA-mediated inhibition of the GABAergic pallidal-subthalamic pathway results in an increased glutamatergic drive in the subthalamic-pallidal pathway. These results demonstrate a tonic pallidal GABA-mediated inhibition of excitatory subthalamic-pallidal neurons and strengthen the evidence for a functional role of NT in the regulation of glutamate and GABA transmission in the basal ganglia. The ability of intrastriatal SR48692 to counteract the NT-induced increase in both striatal and pallidal glutamate and GABA release suggests that blockade of the striatal NT receptor may represent a possible new therapeutic strategy in the treatment of those hypokinetic disorders implicated in disorders of the indirect pathway mediating motor inhibition.  相似文献   

20.
Spontaneous [3H]dopamine ([3H]DA) overflow was measured from striatal slices in the presence of different glutamate (Glu) receptor agonists such as N-methyl-D-aspartate (NMDA), kainate (KA) and quisqualate (QA) and their corresponding antagonists, Dizocilpine maleate (MK-801), D-gamma-glutamyl-aminomethanesulfonic acid (GAMS) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), respectively. [3H]DA uptake and release in the presence of L-Arginine (L-Arg) and NG-nitro-arginine (L-N-Arg), an inhibitor of nitric oxide (NO) synthesis were also evaluated. L-N-Arg alone or combined with L-Arg significantly reduced [3H]DA uptake at 10 and 100 microM from 33% to 44% from striatal slices. Whereas, in brain synaptosomal fractions L-Arg induced a biphasic effect on that [3H]DA uptake in a dose dependent manner, and L-N-Arg showed an absolute inhibition in 80-90% of this [3H]DA uptake at 1-500 microM. The amino acids, lysine, valine and histidine (100 microM) had a little effect inhibitory on [3H]DA uptake from synaptosomal fractions. Glu agonists, NMDA (10 microM) and KA (10 microM) importantly increased the spontaneous [3H]DA overflow, which was blocked by MK-801 (10 microM) and GAMS (10 microM), respectively. QA had no effect on [3H]DA release. L-Arg (10-200 microM) potentiated the spontaneous [3H]DA overflow in a dose dependent fashion from striatal slices, being reverted by 10 microM L-N-Arg alone or in combination with all other compounds; whereas, lysine, histidine and valine did not modify that spontaneous [3H]DA overflow. Results support the hypothesis related to the participation of NO on DA transport possibly synthesized at the dopaminergic (DAergic) terminals in the striatum; also that L-Arg concentration may determine alternative mechanisms to regulate the DAergic activity at the striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号