首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
路图傅里叶变换及其在滚动轴承故障诊断中的应用   总被引:1,自引:0,他引:1  
图信号处理(Graph signal processing, GSP)是由谱图理论发展起来的新研究领域。图傅里叶变换(Graph Fourier transformation, GFT)是图信号关于图拉普拉斯矩阵特征函数的展开,也是GSP的基础。对路图的GFT进行分析,发现GFT得到的特征值谱与经典的傅里叶变换(Fourier transformation, FT)频谱有一一对应关系,同时,特征值谱的幅值与特征矢量也有对应关系。将GFT引入滚动轴承故障诊断,提出基于GFT特征提取和K-均值聚类的滚动轴承故障诊断方法。该方法先用GFT将滚动轴承的路图信号变换到特征值谱域;再计算特征值谱的统计量作为故障特征;最后运用K-均值聚类分类器识别滚动轴承的故障类型。对实际轴承振动信号的分析结果表明,基于GFT和K-均值聚类的故障诊断方法能准确有效地识别滚动轴承故障。  相似文献   

2.
针对滚动轴承故障信号强噪声背景和非线性等特点,为精确识别滚动轴承的故障特征频率,在最小熵解卷积和Teager能量算子解调基础上,提出了一种基于Hanning窗插值快速傅里叶变换的滚动轴承故障诊断新方法。该方法首先利用最小熵解卷积对轴承故障信号进行降噪,再结合Teager 能量算子对降噪后的故障振动信号进行解调,经傅里叶变换后得到信号的Teager解调谱;然后采用Hanning窗对解调谱进行加权处理;最后利用信号频点附近三根离散频谱的幅值做插值处理,从而得到精确的故障特征频率。轴承实测振动信号的分析结果表明:与传统的Teager 能量算子解调方法相比,在选取较少分析点的基础上,大多数情况下所提方法仍能精确识别轴承故障特征频率。  相似文献   

3.
为解决滚动轴承运转过程中故障频率的获取问题,提出基于倒频谱分析对采集的轴承各部件数据进行故障诊断。本文选择美国凯斯西储大学官网的轴承型号为6203-2RS JEM SKF的数据进行实例分析,利用滚动轴承故障频率计算公式得到理论故障频率,通过编写matlab程序做出原信号时域图分析数据特点,使用离散快速傅里叶变换得到频域图观察频域范围内特征,考虑到倒频谱可以清楚地分离功率谱中含有的周期分量以及分离边带信号和谐波,基于倒频谱识别故障部位的故障频率。仿真结果表明:利用倒频谱分析可以准确的找出滚动体各部件故障频率,且能很好的吻合滚动轴承理论故障频率。  相似文献   

4.
针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时间序列重构到高维相空间,并估计数据的本征维数;然后利用局部切空间排列算法对数据集进行维数约简,得到初始的低维流形结构特征向量空间的第一行特征,对其进行快速傅里叶变换(FFT),从其频谱中分别提取滚动轴承内环、外环的故障特征频率及它们分别对应的倍频和频谱能量等7个变量作为故障特征向量;最后采用KECA对滚动轴承的故障特征向量进行模式识别,KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,从而实现故障的识别与诊断。采用Case Western Reserve大学提供的轴承实验数据对算法进行了验证,结果表明该方法可有效提取滚动轴承的故障特征,可以对滚动轴承的故障类型精确分类,实现对滚动轴承准确的故障诊断。  相似文献   

5.
针对旋转机械振动信号复杂且难以提取有效故障特征的问题,提出了一种短时傅里叶变换和二维深度卷积网络相结合的故障诊断方法。首先对旋转机械振动信号进行短时傅里叶变换,得到时频图;接着将时频图输入到二维深度卷积网络中进行识别,得到最终分类结果。将该方法分别应用于滚动轴承与齿轮箱故障诊断中,在凯斯西储大学滚动轴承数据集、PHM2009直齿齿轮箱数据集上均取得了较好效果,正确率优于将时域信号直接输入到经典CNN中,验证了该方法的优越性。  相似文献   

6.
同步提取变换(synchroextracting transform, 简称SET)通过提取短时傅里叶变换(short-time Fourier transform, 简称STFT)在瞬时频率位置的时频系数可获得较理想的时频谱,该方法提高了时频分辨率,减少了交叉项的影响,一定程度上抑制了噪声对STFT时频谱的干扰。针对在SET时频谱的基础上进行信号分量的重构与故障诊断拓展方面的应用,提出了一种基于顺序统计滤波器(order statistics filter, 简称OSF)的SET信号分量重构方法。首先,利用边际谱表征SET时频谱中信号的幅值在整个频率范围内随频率变化的情况;其次,采用顺序统计滤波器分割边际谱,将分割所得边界映射至SET时频谱后,利用SET逆变换重构信号分量;最后,利用峭度指标筛选包含丰富故障信息的分量并进行包络分析,提取故障特征。仿真信号及滚动轴承内圈故障信号的处理结果证明了该方法的有效性。  相似文献   

7.
《机械传动》2017,(4):176-180
针对变转速条件下滚动轴承故障特征难以提取的问题,提出了一种基于角域经验小波变换的变转速滚动轴承故障诊断方法。该方法首先利用等角度重采样将变转速下非平稳的滚动轴承故障振动信号转化为角域平稳信号,然后应用经验小波变换(Empirical mode decomposition,EWT)对角域平稳信号进行自适应分解,得到若干个经验模态分量,最后选择峭度值最大的经验模态分量进行包络谱分析,提取出滚动轴承故障的阶比特征。为提高经验小波变换的分解效率,对其频谱分割方法进行了改进。滚动轴承故障诊断实例表明,该方法能够有效地抑制噪声等干扰成分的影响,精确提取滚动轴承故障的阶比特征,为变转速条件下的滚动轴承故障诊断提供一种有效方法。  相似文献   

8.
邢蓉  高丙朋  侯培浩  朱俊栋 《机械传动》2020,44(7):41-45,58
针对现有基于CNN(Convolution Neural Network)的滚动轴承故障诊断方法难以有效挖掘和利用数据中包含的多尺度信息问题,提出了一种多尺度卷积特征融合的滚动轴承故障诊断方法。加入上采样层,通过递归方式建立具有多尺度特征提取和融合能力的卷积神经网络MSCNN(MultiScale Convolution Neural Network)结构,提升模型对输入信号的理解能力。利用美国凯斯西储大学(CWRU)数据库对所提方法的有效性进行验证,采用短时傅里叶变换对滚动轴承信号进行频谱分析,将频谱样本输入到MSCNN网络中,数据分析表明,该方法能有效地提升故障的诊断精度。  相似文献   

9.
周浩  贾民平 《机电工程》2014,31(9):1136-1139
针对直接运用快速傅里叶变换(FFT)无法有效提取具有非线性非平稳特性的滚动轴承振动信号故障特征频率的问题,提出了一种基于经验模式分解和峭度指标的Hilbert包络解调方法.首先对滚动轴承的振动信号进行了经验模式分解(EMD),得到了包含轴承故障特征信息的各阶本征模态函数(IMF),再计算各阶IMF的峭度值,选取了峭度值较大的几阶IMF分量重构信号,并对重构信号进行了Hilbert包络解调分析,从而获得了滚动轴承的准确故障特征信息.分别对仿真模拟信号和实际滚动轴承发生内圈故障的振动信号进行了分析,清晰地得到了故障特征频率.研究结果表明,利用融合EMD、峭度系数和Hilbert包络解调的诊断方法能够快速、准确地提取滚动轴承的故障特征频率,从而可以对滚动轴承进行有效地故障诊断.  相似文献   

10.
基于EMD与倒谱分析的轴承故障诊断   总被引:2,自引:0,他引:2  
提出了一种基于经验模态分解与幅值倒频谱分析的轴承故障诊断方法。该方法首先对外圈故障信号作传统的傅里叶幅值谱和幅值倒频谱分析,未能明显地找到故障特征;然后对故障信号做经验模态分解,并对分解出来的第一层本征模函数作倒频谱分析,有效地提取出了故障特征;最后,用该方法分别对具有内圈故障和滚动体故障的轴承故障信号作分析,也有效地提取出了故障特征。实验结果表明,通过联合经验模态分解和倒频谱分析,能有效并且准确地提取出轴承的故障特征频率。  相似文献   

11.
针对滚动轴承的故障诊断问题,提出一种基于迭代希尔伯特变换(Iterative Hilbert Transform,IHT)与切片双谱相结合的滚动轴承故障诊断方法。基于IHT方法对原始的振动信号进行了分解,得到若干个含有故障特征信息的幅值包络分量,并对每个幅值包络分量的切片双谱进行计算,由二次相位耦合产生的非线性特征提取出滚动轴承故障的特征频率信息。仿真信号分析结果表明,该方法可有效抑制噪声对IHT方法的影响,诊断效果良好,证明了该方法的有效性。  相似文献   

12.
《机械传动》2017,(3):191-196
针对强背景噪声下滚动轴承微弱故障特征难以提取的特点,提出了基于傅里叶分解(FDM)与1.5维Teager能量谱的滚动轴承故障诊断方法。首先利用傅里叶分解的自适应性特点,将故障信号分解为若干个瞬时频率具有物理意义的固有频带函数,然后利用自相关系数法筛选固有频带函数进行信号重构,对重构后的信号求解1.5维Teager能量谱,从而得到故障特征频率,进行故障诊断。仿真结果表明,与传统的包络谱分析相比,该方法的故障特征更加明显,效果更好。最后将该方法成功地应用到实际的滚动轴承故障诊断中,进一步验证了该方法的有效性。  相似文献   

13.
针对滚动轴承运行过程中的早期故障检测与诊断,提出了一种基于图建模特征提取的滚动轴承故障诊断方法.首先,结合短时傅里叶变换与图谱理论对信号进行图建模;其次,通过随机幂鞅对故障进行检测,计算邻接矩阵熵值并将其作为特征向量训练支持向量机;最后,结合支持向量机对故障进行诊断.分别采用2个数据库对本方法进行故障检测与诊断验证,实...  相似文献   

14.
分析了滚动轴承典型故障产生机理及其故障特征频率,提出一种利用自适应短时傅里叶变换(ASTFT)抑制维格纳分布(WVD)交叉项的故障诊断方法。该方法首先对信号进行ASTFT得到信号的ASTFT谱图,然后将ASTFT谱作为窗函数对信号的WVD进行加窗处理,从而有效消除掉WVD中的交叉项。仿真实验验证了该方法的优越性。将该方法应用于轴承的故障诊断,结果表明,该方法用于故障特征提取是有效的。  相似文献   

15.
针对滚动轴承故障振动信号的非平稳特征,介绍了一种基于Teager-Huang时频谱和边际谱的滚动轴承故障诊断方法。详细阐述了Teager-Huang时频谱和边际谱的计算方法及物理意义。给出了该故障诊断方法的步骤,并对仿真和实际轴承的滚动体故障、内圈故障和外圈故障信号进行了分析和故障诊断。结果表明,基于Teager-Huang变换的故障诊断方法具有计算速度快,估计准确稳定的特点,是准确判断滚动轴承故障状态的一种有效新方法。  相似文献   

16.
为了在滚动轴承故障诊断中获得更好的效果,详细研究了小波包分析的原理,提出了基于小波包分析的滚动轴承特征向量提取算法,并利用这一算法对齿轮箱的滚动轴承在正常工况下的振动信号和故障工况下的振动信号进行了10层小波包分解处理.将处理后的图像和相同信号傅里叶变换后的频谱图进行了比较,证明本算法能够较好地分辨出滚动轴承的工作状况是否正常,具有一定的理论价值和现实意义.  相似文献   

17.
字玉  周俊 《机电工程》2022,(7):949-954
为了有效地提取出滚动轴承故障信号的冲击特征,提出了一种基于S变换时频谱和奇异值中值分解(SVMD)算法的滚动轴承故障诊断方法。首先,利用S变换对滚动轴承原始振动信号进行了时频变换,得到了其时频系数矩阵,通过SVMD对时频系数矩阵进行了计算,筛选出合适的奇异值用以降噪;然后,通过仿真的方式,对结果进行了S逆变换,以获得信号的时域冲击特征;最后,以滚动轴承(型号N205)外圈、滚动体故障为例,进行了故障信号冲击特征提取实验,通过对轴承的外圈和滚动体故障数据分析处理,对基于ST-SVMD算法的有效性进行了验证。研究结果表明:通过采用基于ST-SVMD算法,得到了滚动轴承外圈的故障频率,该频率与该型号轴承特征频率基本一致;基于ST-SVMD算法,得到了滚动轴承滚动体的故障频率,该频率与该型号轴承特征频率基本一致;该结果证明,基于ST-SVMD算法在滚动轴承故障信号冲击特征的提取方面是有效的。  相似文献   

18.
变转速工况下的滚动轴承故障振动信号具有多分量调制以及故障特征频率受到转频调制的特点,从而导致故障特征提取困难。对此,将局部均值分解(local mean decomposition,简称LMD)与阶次跟踪分析相结合,提出了一种变转速工况下的滚动轴承故障诊断方法。首先,采用阶次跟踪采样将时域滚动轴承故障振动信号转换到角域;然后,对角域信号进行LMD分解得到若干个乘积函数(product function,简称PF)分量;最后,对各个PF分量的瞬时幅值进行频谱分析,判断滚动轴承的故障部位和类型。通过对滚动轴承实验故障振动信号的分析,结果表明该方法能有效地应用于变转速工况下的滚动轴承故障诊断。  相似文献   

19.
利用小波包理论的基本原理,对滚动轴承的故障信号进行了处理,实测信号经小波包分解和重构后,应用Hilbert变换进行包络解调和细化频谱分析,得出故障信号所对应的频谱。试验结果证明,对滚动轴承的非平稳信号进行小波包的Hilbert变换和细化频谱分析,并进行故障诊断是行之有效的,这为旋转机械的故障诊断提供了新的参考,具有重要的实际工程应用价值。  相似文献   

20.
黄姗姗  李志农 《轴承》2023,(2):19-25
基于高密度小波变换对原始信号尺度划分更加精细的优势,将高密度小波变换、软阈值降噪和频谱分析相结合,提出了基于高密度小波变换的航空发动机滚动轴承故障诊断方法。该方法通过设定分解层数对信号进行高密度小波变换,得到每一尺度上的低频、中频、高频分量;对各分量软阈值降噪处理后进行频谱分析,进而实现故障特征频率的识别。利用仿真信号验证了高密度小波变换的有效性,通过航空发动机滚动轴承内圈故障和滚子故障工况下的试验信号进一步验证了该方法提取故障特征的能力,与传统小波变换方法的对比证明了该方法在抑制噪声干扰和故障特征频率识别方面的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号