首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将前缘缝翼思想运用到离心风机中,研究了叶片前缘开缝设计参数对离心风机内部流场及其声辐射的影响规律。研究表明:叶片前缘开缝使气流通过狭缝得到加速,抑制后叶片吸力面边界层分离;同时,开缝设计使叶轮内部压力脉动明显减弱,降低离心风机气动噪声源强度,存在最佳开缝参数组合使离心风机流动与降噪效果达到最佳;设计工况下,当开缝位置L/C=0.30,前叶偏转角θ=4°,且前、后叶片最大相对厚度相等时,离心风机全压提高7%,效率提高2%,其远场噪声各测点总声压级平均下降3.5 dB。  相似文献   

2.
为研究某重型燃气轮机的压气机叶栅在振荡条件下的非定常响应特性,采用基于γ-Reθ转捩模型的雷诺时均方程对可控扩散叶型组成的振荡叶栅进行了数值计算,研究了折合频率、来流攻角和前缘造型对叶片气动性能及表面边界层发展的影响。结果表明:叶片吸力面发生分离前存在较大的压力波动,边界层转捩后叶片表面压力波动减小;叶片振动对可控扩散叶型的分离转捩特性影响较大,随着叶片振动折合频率的增大,叶片吸力面边界层分离转捩位置向叶片前缘移动;通过优化前缘曲率造型能抑制边界层转捩位置的前移,同时改善振动状态下的前缘压力波动特征。  相似文献   

3.
为提高离心鼓风机的气动性能,对一离心鼓风机扩压器叶片前缘前后盖板同时进行开槽处理,并采用数值模拟方法定量研究开槽结构对离心鼓风机气动性能及内部流场的影响。结果表明,具有开槽结构的扩压器进口回流与上游叶轮尾迹影响明显减小,其次一部分高速流体从开槽区域射入扩压器吸力面侧,并与主流掺混,从而加速了扩压器流道中后段的流动,抑制了叶片尾部的附面层分离。因此,在适宜的开槽参数下,开槽结构能提高离心鼓风机的总压升和效率。离心叶轮出口和叶片扩压器进口典型位置非定常压力脉动频域特性的结果表明:在开槽扩压器内部叶频的影响减小,而轴频起了主导作用,并发现开槽处理后,扩压器内部的压力脉动幅值明显减小,减小压力脉动的幅值在一定程度上能减弱离心鼓风机内的流动诱导噪声。  相似文献   

4.
为了有效改善轴流风机气动和声学性能,以带后置导叶的OB-84型单级动叶可调轴流风机为对象,利用Fluent软件和Ansys有限元分析模块,对比叶片弯曲前后风机的气动性能和内流特征,分析其静力结构特性并进行了噪声预估。结果表明:叶片弯曲后风机全压提高,大体积流量侧气动性能改善效果明显,设计工况点前弯3.0°性能提升最佳,全压和效率分别提升了3%和0.16%;前弯叶片增大了叶根区轴向速度,延缓了叶根区分离流动的出现,提升了叶片中下部做功能力,减小了叶顶区吸力面与压力面间的压差,有效抑制了叶顶泄漏流的产生;弯曲叶片对降低声功率级影响较小,但可缩小高噪声区分布,从而降低风机噪声。  相似文献   

5.
为了探究仿生叶片对离心风机气动性能、流场和声场的影响,将波形前缘、锯齿尾缘和表面凹坑3种仿生结构应用在离心风机叶片上,并对其流动和噪声辐射进行了数值计算.结果表明:表面凹坑结构抑制了叶片吸力面上的分离流,提升了离心风机的全压和效率,但蜗壳壁面附近的压力脉动幅值增大,最终使噪声不降反增0.85 dB;锯齿尾缘型风机虽然做...  相似文献   

6.
基于流动控制技术,以某型号的低比转速离心式不锈钢冲压叶轮作为研究模型,采用数值模拟和试验研究了叶片不同开缝位置(r/R)对叶轮内部能量、湍流动能及耗散率分布的影响,同时制作了开缝叶片离心泵样机模型,并进行了试验验证,分析了叶片上开缝的相对位置对离心泵的扬程及效率等外特性的影响,比较了叶片有、无开缝的性能变化。研究结果表明:叶片开缝的位置对叶轮内流体能量的分布以及获得的总压能影响较大;开缝的存在会引起离心泵内部流场的变化,在开缝的地方会产生湍动能及耗散率的突变;不同的开缝相对位置对离心泵性能影响不同,开缝的相对位置为0.875,与没有开缝叶片的离心泵相比,效率提高了1.52%,拓宽了离心泵的高效区间,在大流量时,开缝存在起到了抑制分离的产生,提高了离心泵的扬程,改善了叶轮流道中流体的流动状态。  相似文献   

7.
串列叶栅前后排叶片相对位置对串列扩压器的性能有重要影响.根据离心叶轮出口气流参数设计了一离心式串列叶栅扩压器,并利用数值模拟方法在前、后排叶栅周向相对位置分别为10%、20%、30%、40%、50%、60%、70%、80%和90%时对离心压气机级进行了计算和分析,研究周向相对位置变化对离心压气机性能的影响以及作用机理.数值模拟结果表明:随着前后排叶栅周向相对位置变化,后排叶栅前缘滞止高压区相对前排叶栅的位置发生了变化,影响了前排叶栅压力面的压力分布,从而改变了前排叶栅压力分布及大小;当前后排叶栅周向相对位置为30%时,扩压器性能达到最佳,使压气机总压比和等熵效率最大,稳定工作范围增大;前后排叶栅所形成的渐缩通道可抑制后排叶栅吸力面边界层的分离.  相似文献   

8.
攻角对透平叶栅气动性能影响的研究   总被引:1,自引:0,他引:1  
采用叶栅吹风试验与数值模拟相结合的方法,研究了攻角变化对具有较大前缘半径和进口楔角的透平叶栅气动性能的影响,试验测量在出口马赫数为0.8、攻角-61.0°-+4.0°内进行,对应的雷诺数为6.0×105.在试验验证数值方法可靠性的基础上,对叶栅流动损失进行了数值研究,分析了攻角变化对试验叶栅型面损失中吸力面与压力面边界层损失、尾迹损失和端部次流的影响特性.结果表明:当攻角从+4.0°变化到-41.0°时,叶片表面没有发生流动分离,出口截面的总压损失系数变化幅度不超过0.21%;在负攻角很大(-61.0°)时,压力面边界层发生流动分离,型面损失急剧增大;具有较大前缘半径和进口楔角的试验用叶栅表现出良好的变攻角气动性能.  相似文献   

9.
当压气机叶片负荷很大时,吸力面会发生严重的分离,在此基础上若正攻角继续增加,则叶片整个吸力面都可能发生分离,吸力面分离起始点不断向叶片前缘移动,可能出现类似外流中大攻角三角翼的非对称结构.利用数值模拟方法,采用边界层吹气技术,研究了具有68°折转角的矩形缝隙叶栅在不同攻角条件下的流动特点和气动性能.计算结果表明,叶片采用压力面到吸力面的吹气槽,在正攻角较大时能有效控制扩压叶栅中的附面层分离,消除原型叶栅中非对称的旋涡结构,降低气动损失,其中在+4°攻角下可将能量损失系数降低约12.5%,同时可使流通能力大大改善,扩大稳定工作范围.  相似文献   

10.
两级动叶可调轴流风机内流特征的数值模拟   总被引:1,自引:1,他引:0  
采用Fluent软件对某600 MW机组配套的两级动叶可调轴流一次风机进行了全三维定常数值模拟,分析了风机第一、第二级叶轮内流特征和动叶安装角对风机性能的影响.结果表明:第二级叶轮出口总压整体呈现高压区和次高压区交替分布的特征,且比第一级叶轮的对称性差;第一、第二级叶轮叶片压力面、吸力面的总压和静压分布规律相似;第二级叶轮叶片压力面和吸力面相应位置上的静压值均大于第一级叶轮叶片;随着动叶安装角的增大,第一、第二级叶轮的总压升系数和静叶的扩压系数均增大,且第二级叶轮大于第一级叶轮,表明第二级叶轮的做功能力和静叶的扩压能力均比第一级叶轮的大.  相似文献   

11.
为减小流体从吸力面流至压力面的速度损失,基于小间距翼缝有助于减小气动损失的设计原理,针对NACA0021翼型,提出双侧导流式、内导流式和外导流式3种新型翼缝形式。通过数值模拟方法,分析不同翼缝对垂直轴风力机气动性能和流场结构的影响,并将其性能参数与原始翼型和非圆弧翼缝翼型进行对比。结果表明:内导流式翼缝风力机气动性能优于原始风力机,最佳尖速比减小8.06%,改善了叶片周围和整机流场结构,增强了风力机运行稳定性;在低尖速比下,双侧导流式翼缝风力机气动性能较高,而高尖速比时气动性能低于原始风力机;下游区叶片迎风速度较低,外导流式翼缝对流动分离现象改善效果不明显,导致气动性能较差;非圆弧翼缝的间距过大使最大风能利用系数降低了15.5%,不适用于直线翼垂直轴风力机。  相似文献   

12.
为改善压气机叶栅内的分离流动、优化气动性能,以仿生凹凸前缘叶栅为研究对象,基于数值方法分析吸力面特殊流动形成的原因,研究零攻角工况下凹凸前缘叶栅的流动特性,并基于涡系变化和附面层结构的分析,总结了凹凸前缘叶栅的流动控制机理。研究结果表明:由于前缘压力梯度作用使凹凸前缘叶栅形成了特殊的流向涡对,在下游向两侧发展形成特殊的三维分离结构,挤压局部流管收缩,提高了流动附着性并重组附面层结构,降低了角区分离范围且避免了大尺度集中脱落涡的形成,改善了下游流动。探索了凹凸前缘叶栅的典型旋涡模型,并基于对流动控制机理的理解,给出若干优化方案,得到叶栅气动性能提升,其中WFB-2-9叶栅相比原始叶栅总压损失系数降低了10.47%。  相似文献   

13.
针对离心透平的环列叶栅叶型,采用四段三次NURBS曲线(非均匀有理B样条曲线),分别对前缘圆弧、尾缘圆弧、叶背、叶盆进行参数化表达,环列叶栅叶型的设计自由度为14个,可灵活进行局部调整。采用高精度流场模拟方法,基于优选法,获得气动性能较高的设计参数。结果表明上述方法简单易行,优选出的离心透平级设计工况及变工况气动性能都得到了显著提升,与已有文献相比,单排静叶总压损失系数降低18.85%,整级轮周效率提高4.08%,动叶叶片数也减少17个。  相似文献   

14.
槽道出口位置对高负荷扩压叶栅性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
针对高负荷扩压叶栅攻角范围小、吸力面流动易分离的特点,采用在叶片上从压力面向吸力面开槽的方法控制局部流动,设计了一种收敛转折型的槽道结构,并通过数值模拟方法研究了不同开槽位置对叶栅性能的影响,计算结果表明:正攻角工况,叶片开槽处理可以有效吹除吸力面分离气流,从而增大静压升,降低总压损失,扩大稳定工作范围;对于大攻角分离情况,最佳开槽位置位于叶型中部附近。  相似文献   

15.
基于被动流动控制理论及常用气动噪声预测方法,在S809翼型前缘吸力面附加微小翼型,以提高主翼抵抗流动分离的能力。采用数值模拟方法,在α=6°~24°来流攻角范围内计算复合翼的气动性能及噪声特性,并分析了流动控制机理。结果表明:在失速攻角之前,复合翼的气动性能表现优于原始翼型,有明显增升效果,但其气动噪声特性相比原始翼型较差;在大攻角下,前缘小翼的存在将主翼来流失速临界攻角由α=16°延缓至α=22°,且有明显降噪作用,复合翼相比原始翼型在接收点处的噪声总声压级最大可以减小7.23%。  相似文献   

16.
涡流发生器作为一种有效的流动控制方法之一,已被成功应用于改善风电叶片的气动特性,众多研究表明,涡流发生器的使用可以有效延迟气流分离,提高升阻比。为了深入了解加装涡流发生器的增升减阻特性,本文以NACA63-415翼型为研究对象,通过数值模拟方法研究分析了不同形状、不同弦向安装位置和多个攻角下涡流发生器对风力机叶片气动特性的影响,结果表明:在不同形状、不同安装位置及攻角下涡流发生器均可有效抑制风力机叶片边界层分离、提高升阻比,其中20%翼型弦向处安装的涡流发生器增升减阻效果最好。  相似文献   

17.
陈涛  蒋笑  王海鹏  吴洲 《可再生能源》2020,38(6):765-770
文章通过数值模拟方法研究了不同相对厚度的前缘缝翼对S809翼型气动性能的影响,并揭示了前缘缝翼相对厚度对流动控制产生影响的机理。研究结果表明:在大攻角下,空气流经过前缘缝翼会在其尾部产生涡旋,尾缘涡旋的形成有助于抑制S809翼型流动分离,进而改善翼型绕流场;不同相对厚度的前缘缝翼产生尾缘涡旋不同的流动轨迹,对翼型的流动控制作用效果不同;相同条件下,前缘安装最大相对厚度为35%的前缘缝翼能够将S809翼型最大升力系数提升至1.25,失速攻角推迟至17.21°;安装最大相对厚度为14%的前缘缝翼,能够使S809翼型最大升力系数提升至1.53,并使翼型在攻角为20.16°时仍未发生失速。  相似文献   

18.
以NACA0018翼型为原始模型进行前缘结构设计,采用计算流体动力学(CFD)方法分析凹凸前缘结构参数对叶片绕流流动及气动性能的影响。结果表明:在0°~10°攻角范围内,凹凸前缘叶片气动性能与原始叶片基本一致,但在15°~25°攻角范围内,正弦波形凹凸前缘叶片升力系数最大提升20.2%;叠加波形凹凸前缘叶片在15°~25°攻角内,气动性能均有不同程度的下降,波峰处推迟分离,而在波谷分离提前,在吸力面每个波谷顺流方向叶片及展向形成反向涡对,相互卷吸并与主流掺混增加能量交换向尾缘处移动,改变了叶片原始流场反馈回路,阻碍了叶片展向涡及流向涡的发展。  相似文献   

19.
针对在大来流攻角下,NACA0015翼型发生的流动分离现象,在翼型吸力面前缘加装微小平板研究平板不同加装位置对翼型流动控制效果的影响。在风洞中,通过测力天平,得到翼型升阻力特性变化曲线;再通过烟线实验进行流场可视化。研究表明:当微小平板水平加装位置X=0,垂直加装位置Y=0.07c(c为翼型弦长)时,控制翼型流动控制效果最佳,失速攻角推迟了19°;在翼型前缘正前方或正上方一定距离加装微小平板,都能有效抑制翼型吸力面的流动分离,提高翼型的气动性能。  相似文献   

20.
第一级导叶改进对两级动叶可调轴流风机性能的影响   总被引:1,自引:1,他引:0  
利用Fluent软件对某两级动叶可调轴流风机进行全三维数值模拟,探讨了第一级导叶采用长短复合式和单一长叶片式2种叶片结构对风机气动性能的影响,并比较了短叶片不同轴向、周向位置和叶片长度时的风机性能.结果表明:长短复合式导叶的单级扩压性能及整机气动性能均优于单一长叶片式导叶;当短叶片位于第一级导叶入口、相邻长叶片中间栅距时,风机的全压和效率均达到最优,尤其是效率明显高于其他位置;短叶片长度对风机性能也有明显影响,当其长度为320mm时,风机的不可逆损失最小,增加或减小短叶片长度均导致风机气动性能变差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号