首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 37 毫秒
1.
以含烯丙基醚的双马来酰亚胺预聚体(AE-BMI)作为苯并噁嗪(BOZ)的改性剂,采用非等温差示扫描量热(DSC)法、Kissinger法、Crane法和β-T(升温速率-温度)外推法研究了AE-BMI/BOZ体系的固化动力学过程。结果表明:BOZ体系的凝胶温度为174.86℃、固化温度为210.95℃和后处理温度为222.44℃,AE-BMI/BOZ体系的凝胶温度为114.84℃、固化温度为199.75℃和后处理温度为227.64℃;两者的反应活化能分别为89.03、69.97 kJ/mol,反应级数分别为0.83、0.79。  相似文献   

2.
以双马来酰亚胺(BMI)作为苯并噁嗪(BZ)树脂的改性剂,采用非等温差示扫描量热(DSC)法及Freeman-Carroll法研究了改性BMI/BZ树脂体系的反应特性和固化反应动力学过程。结果表明:改性BMI/BZ树脂体系的凝胶时间随BMI用量增加而缩短;改性BMI/BZ树脂体系的固化反应只有一个放热峰,其峰顶温度(230℃左右)明显低于纯BZ体系,并且与BMI用量无关;改性BMI/BZ树脂体系的固化反应近似于1级反应,当w(BMI)=30%~50%时,所建立的固化反应动力学模型在10℃/min时能较好描述改性树脂体系的固化反应过程。  相似文献   

3.
采用非等温差示扫描量热(DSC)法对纳米二氧化硅/环氧树脂/双马来酰亚胺/氰酸酯(nano-SiO2/EP/BMI/CE)树脂进行了固化反应动力学和固化工艺研究。通过Kissinger法和Ozawa法求得了nano-SiO2/EP/BMI/CE树脂体系固化反应动力学的表观活化能。结果表明:改性CE树脂体系的固化工艺参数为凝胶温度112℃、固化温度195℃及后处理温度213℃,进而确定了改性CE树脂体系的最佳固化工艺条件为"150℃/3 h→180℃/3 h→200℃/2 h";改性CE树脂体系的平均表观活化能为59.90 kJ/mol。  相似文献   

4.
采用差示扫描量热(DSC)法和红外光谱(FT-IR)法对缩水甘油胺型环氧树脂(AG-80)与脂环族缩水甘油酯型环氧树脂(TDE-85)共同改性双马来酰亚胺(BMI)/氰酸酯树脂(CE)的固化反应历程进行了研究,并按照Kissinger和Crane法计算出该改性树脂体系固化反应的动力学参数。结果表明:改性树脂体系的固化反应表观活化能为68.11 kJ/mol,固化反应级数为0.860(接近于1级反应);环氧树脂(EP)可促进CE固化,当固化工艺条件为"150℃/3 h→180℃/2 h"时,改性树脂体系可以固化完全。  相似文献   

5.
PES改性低温固化双马树脂固化动力学研究   总被引:1,自引:1,他引:0  
以聚醚砜(PES)作为双马树脂(BMI)的增韧剂,以3,3′-二烯丙基双酚A(DP)作为改性剂,采用非等温DSC(差示扫描量热)法,研究了PES改性低温固化BMI/DP体系的固化反应动力学。结果表明:根据Kissinger方程、Crane方程和n级动力学模型计算出BMI/DP体系的固化动力学方程为dα/dt=2.1×10~(11)(1-α)~(1.07)e×p(-13.89×10~3/T);采用红外光谱(FT-IR)法跟踪固化反应过程,确定了BMI/DP体系的固化工艺为"130℃/3 h→140℃/1h→160℃/2 h→180℃/2 h"。  相似文献   

6.
以Amicure HAPI(改性咪唑)为促进剂、T-80(改性酸酐)和TM-80(酸酐)为固化剂,探讨了不同酸酐固化剂对EP(环氧树脂)体系力学性能和耐热性的影响;然后以最佳性能的EP为基体树脂、玻璃纤维为增强材料,采用手糊法制备了复合材料层压板。研究结果表明:两种酸酐固化体系均具有良好的力学性能,并且T-80/EP固化体系的拉伸强度、弯曲强度和冲击强度均得到提升,但拉伸模量和弯曲模量基本不变;两种酸酐固化体系均具有良好的耐热性,并且T-80/EP固化体系的耐热性基本不受影响;以EP/T-80体系制得的层压板具有相对最好的综合力学性能和耐热性。  相似文献   

7.
用动态DSC法研究了聚碳酸酯(PC)改性环氧树脂(EP)体系的固化行为,采用Flynn-Wall-Ozawa法分析了EP/PC体系固化活化能与转化率的关系,利用Kissinger和Crane方程研究了EP/PC体系固化动力学参数,并用TG和DSC研究了复合体系的热性能。结果表明:PC的加入没有改变EP的固化机理,反应级数基本不变,但是降低了EP固化物的热分解温度和玻璃化转变温度。  相似文献   

8.
超支化聚合物改性EP(环氧树脂)是近年来EP应用的研究热点。以超支化聚乙烯亚胺(PEI)/异佛尔酮二胺(IPDA)作为EP的复合固化剂,探讨了PEI/IPDA/EP固化体系的固化行为和固化动力学。研究结果表明:PEI的引入能有效降低IPDA/EP体系的黏度、提高体系的相容性,并且体系的固化活化能从56.12 k J/mol降至52.02 k J/mol。  相似文献   

9.
以EP(环氧树脂)为基体、UBMI[PU(聚氨酯)修饰的BMI(双马来酰亚胺)]为耐热改性剂、DDS(4,4′-二氨基二苯砜)为固化剂,制备了EP/DDS/UBMI胶粘剂,并着重考察了EP/DDS/UBMI体系的固化行为。研究结果表明:EP/DDS/UBMI体系的固化反应包含了UBMI/DDS的迈克加成反应、DDS中氨基与EP中环氧基的反应、生成的仲氨基继续与环氧基的反应、UBMI的均聚反应等,采用Kissinger法和Ozawa法可计算得该体系的表观活化能(Ea)和频率因子(A),并且确定了该体系的固化条件是"160℃处理2 h→200℃处理4 h→270℃处理4 h";EP经UBMI改性后,树脂固化物的玻璃化转变温度(Tg)略有降低,而热稳定性基本未受影响。  相似文献   

10.
采用催化剂、3,3′-二烯丙基双酚A(DP)和多官能团单体C改性4,4′-二氨基二苯甲烷双马来酰亚胺(BMI)树脂,制取低温固化、高温性能优良的改性BMI树脂。采用差示扫描量热法(DSC)研究了改性BMI树脂的固化反应动力学,计算了固化反应体系的动力学参数,进而提出了该改性BMI树脂固化成型过程的动力学模型,并结合傅里叶红外光谱(FT-IR)对反应机理进行了探讨。研究结果表明,催化剂对固化反应的进行有重要的促进作用,改性BMI树脂的固化温度由259℃降为178℃;烯丙基与马来酰亚胺基的"ene"反应非常显著,且改性剂C与DP的"ene"反应历程相似;改性BMI树脂的固化工艺确定为120℃×6h+140℃×2h+160℃×2h+180℃×2h,后处理工艺为200℃×6h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号