首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以聚乙二醇(PEG)为相变物质,可生物降解脂肪族聚酯——聚丁二酸丁二酯(PBS)为骨架支撑材料,通过接枝共聚法和偶联共混法制备了PEG/PBS高分子固-固相变材料.采用红外光谱和差示扫描量热法研究了相变材料的结构和相变行为;利用偏光显微镜(PLM)观察了相变材料的结晶形态.结果表明:接枝共聚法和偶联共混法制备的相变储能材料均具有可逆的相转变特性.两种相变材料中,相变物质PEG的结晶相转变焓分别为83.9,103.2 kJ/g,结晶峰值温度分别为21.4,23.9℃;此外,在等温结晶过程中,可观察到采用两种方法制备的PEG/PBS相变材料中存在尺寸大小不均匀的混合球晶形态;同均聚物相比,球晶尺寸均变小,PBS的环带球晶形貌消失.  相似文献   

2.
聚乳酸/聚乙二醇共混物的结晶与降解行为   总被引:1,自引:0,他引:1       下载免费PDF全文
针对聚乳酸(PLLA)亲水性差、降解周期长的问题,利用与亲水性高分子聚乙二醇(PEG)共混的方法对其进行改性。采用转矩流变仪制备了不同组成的PLLA/PEG共混物颗粒,系统研究了PLLA/PEG共混物的结晶和熔融、亲水性和在酸碱介质中的降解行为。结果表明,PEG的加入增强了共混物中PLLA的结晶能力,提高了PLLA在降温过程中的熔融结晶温度。PLLA/PEG共混物在等温结晶中表现出比纯PLLA更快的结晶速度。通过改变PLLA/PEG共混物的组成,可调控材料的表面亲水性和降解速率。随着PEG含量的增多,PLLA/PEG共混物的表面接触角降低。PLLA与PLLA/PEG共混物均可在水溶液中降解,共混物的降解速率高于纯PLLA,随着PEG含量的升高和降解液中酸碱浓度的提高,PLLA/PEG共混物的降解速率加快。  相似文献   

3.
通过熔融共混的方法制备了聚乳酸(PLA)/滑石粉(Talc)/聚乙二醇(PEG)共混物,研究了共混物的非等温结晶过程,分析了PLA结晶过程中Talc和PEG的协同效应。结果表明:随着降温速率的增大,共混物的结晶峰温都向低温区偏移,结晶度降低,结晶速率提高;试验发现在成核阶段Talc起到促进晶核形成的决定性作用,Talc与PEG协同效应对PLA结晶速率的显著影响体现在生长阶段(Ⅱ区);偏光显微镜(POM)观察也表明Talc和PEG的协同效应在结晶期的生长阶段。  相似文献   

4.
以微晶纤维素(MCC)为原料,制备纤维素海绵(Cell),并以其作为基体,通过物理共混的方法与聚乙二醇(PEG)PEG-6000进行复合,制备聚乙二醇/纤维素相变材料(PCMs),研究了PCMs的结构与相变储能性能。实验结果表明:PCMs中PEG的质量分数可以达到90.77%,且相变过程中不会发生液体泄漏的问题。FT-IR分析表明纤维素基体和PEG之间存在明显的氢键作用,无新化合物产生。XRD分析结果表明:与纯PEG-6000相比,纤维素基体的加入不会改变PEG的结晶形态,但会降低PEG的结晶度。DSC结果表明,PCMs的熔融焓(ΔHf)随着PCMs中PEG质量分数的增加而增大,ΔHf最高可达146.88J/g(PCM5),但均小于纯的PEG(179.09J/g);PCMs的结晶焓(ΔHc)随着PCMs中PEG质量分数的增加而降低,ΔHc的绝对值最高可达137.81J/g。TG分析表明,当环境温度小于250℃时,PCMs的热稳定性较好。  相似文献   

5.
吕挺  单国荣 《化工学报》2009,60(6):1581-1586
用改进溴化法对丙烯酰胺(AM)在聚丙烯酰胺(PAM)-聚乙二醇(PEG)-H2O双水相体系中的分配进行了研究,分配系数随PEG浓度、分子量的增加而减少,随PAM浓度、分子量的增大而增大,而随温度的升高先减小后增大。并在此基础上,对AM在PEG水溶液双水相聚合过程中单体在两相的分配进行了研究,考察了PEG浓度、单体浓度、温度对聚合过程中单体分配的影响。  相似文献   

6.
在聚乙二醇存在的情况下,自由基聚合得到的聚甲基丙烯酸甲酯/聚乙二醇(PMMA/PEG)共混物,是一种半结晶聚合物;有相分离发生,一部分PEG晶体依然保持其晶体的特征,另一部分PEG晶体转变成非晶态,与PMMA网络复合,形成完全均一的非晶相。  相似文献   

7.
通过IR、DSC和X -ray研究了用化学键联法和溶液共混法制备的聚乙二醇 /二醋酸纤维素 (PEG/CDA)型相变材料的相变热焓、相变温度和结晶度等物性 ,探索了两种材料的链结构与储热性能的关系。结果表明 ,对相同PEG含量的共混材料和化学改性材料而言 ,共混物的相变焓要大于化学改性材料的相变焓 ;但化学改性物是一种固固相变材料 ,而共混物不具有固固相变特性 ,只是一种形状稳定的固液相变材料  相似文献   

8.
通过IR、DSC和X-ray研究了用化学键联法和溶液共混法制备的聚乙二醇/二醋酸纤维素(PEG/CDA)型相变材料的相变热焓、相变温度和结晶度等物性,探索了两种材料的链结构与储热性能的关系.结果表明,对相同PEG含量的共混材料和化学改性材料而言,共混物的相变焓要大于化学改性材料的相变焓;但化学改性物是一种固固相变材料,而共混物不具有固固相变特性,只是一种形状稳定的固液相变材料.  相似文献   

9.
《塑料》2019,(6)
通过熔融共混法制备了聚乳酸/聚丁二酸丁二醇酯/聚乙二醇(PLA/PBS/PEG)共混物,研究了PEG组分对PLA/PBS共混体系微观结构、流变性能、结晶性能、动态力学性能以及冲击性能的影响。结果表明,将PEG组分添加到PLA/PBS共混物中,能够降低PBS分散相的尺寸,均化分散相尺寸分布,增强界面结合。与PLA/PBS共混物相比,PLA/PBS/PEG共混物的复数黏度大幅度降低。由于PEG对PLA和PBS分子链同时具有增塑作用,使PLA/PBS/PEG共混物的结晶能力远大于相应的PLA/PBS共混物,最高结晶度可达17. 4%。通过测试,动态力学性能结果表明,PEG组分能够降低共混体系中PLA组分的玻璃化转变温度,并且促进PLA与PBS之间的相容性。此外,PLA/PBS/PEG共混物的冲击强度得到了显著提高,最高可达到4. 71 k J·m~(-2),比未添加PEG组分的PLA/PBS共混物提高了25. 3%。  相似文献   

10.
聚羟基丁酸己酸酯/聚乙二醇共混膜的制备与性能研究   总被引:1,自引:0,他引:1  
采用溶液浇铸法制备了聚羟基丁酸己酸酯/聚乙二醇(PHBHHx/PEG)共混膜,用DSC和POM研究了其热性能与结晶行为,并测量了其静态水接触角.结果表明,PHBHHx与PEG间存在较强的相互作用.在第二次升温过程中,个别共混比例的PHBHHx在PEG的诱导下可以发生一定程度的结晶,PEG起成核剂的作用.当PEG质量分数为40%时,PHBHHx亲水性能有所改善.PEG的加入对PHBHHx的球晶形态有影响,一定量PEG的加入可以加快PHBH-Hx的结晶速度.  相似文献   

11.
A novel solid–solid phase change materials with polyethylene glycol (PEG) worked as phase change substance and polyacrylamide (PAM) as solid skeleton was synthesized by coupling blend. Their phase change behaviors and structure analysis was studied by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), they had reversible solid–solid phase change properties. The result indicates that the PEG/PAM PCMs has great transition enthalpy and suitable phase transition temperature in the phase transition process. It can be considered as promising PCMs. Otherwise, their crystallization behavior were analyzed by polarization optical microscopy (POM), the crystalline degrees of these phase change materials were affected due to the intermolecular interaction and chemical bond. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
采用差示扫描量热法(DSC)研究了聚对苯二甲酸丙二醇酯/聚乙烯(PTT/PE)共混体系的非等温结晶动力学,通过热台偏光显微镜(POM)对共混物在等温条件下的结晶形态进行了研究。结果发现:PTT/PE共混体系各样品的结晶峰温度随着冷却速率的提高而下降,而半结晶时间t1/2随着冷却速率的提高而提高;结晶动力学常数Zc随着冷却速率的提高而下降,表明共混体系的结晶速率随着冷却速率的提高而降低;在POM观察的时间范围内各样品的球晶尺寸随着时间的延长而增大,PTT/PE(30/70)共混体系在190℃结晶时,球晶尺寸较大,即球晶生长较快。  相似文献   

13.
白静  崔晶  顾玉蓉  刘红波 《塑料》2020,49(2):64-68
采用溶液共混法制备了一系列不同配比的聚乳酸(PLA)/聚乙二醇(PEG)共混物。通过偏光显微镜(POM)、扫描电镜(SEM)和差式扫描量热仪(DSC)研究了不同PEG含量的PLA/PEG共混物在不同结晶温度下,聚乳酸的晶体形貌、球晶生长速率及热力学性能。研究发现,PEG能够显著提高聚乳酸球晶的生长速率。当PEG含量为60%时,PLA/PEG共混物中聚乳酸球晶的生长速率最快,达到23.6μm/min,比纯聚乳酸的最快球晶生长速率(0.5μm/min)高47倍。但是,当PEG含量高于60%时,聚乳酸球晶的生长速率有所降低。同时,PLA/PEG共混物中聚乳酸球晶速率随结晶温度变化的取向,均向低温移动。另外,PLA/PEG共混物中聚乳酸球晶呈现环状花纹。DSC测试结果表明,随着PEG含量的增加,PLA/PEG共混物的玻璃化转变温度明显降低。  相似文献   

14.
杨力  刘伟涛  王炼石 《弹性体》2012,22(2):49-54
用悬浮法在乙烯-丙烯-乙叉降冰片烯三元乙丙橡胶(EPDM)上接枝甲基丙烯酸甲酯-丙烯腈(MMA-AN),将接枝共聚物EPDM-g-MAN与苯乙烯-丙烯腈共聚物(SAN)树脂共混,得到高抗冲、耐老化性能优异的工程塑料。FTIR分析表明,EPDM确已接枝上了MMA-AN支链。研究了AN含量和EPDM含量对EPDM-g-MAN/SAN共混物力学性能的影响。随着EPDM含量的增加,共混物缺口冲击强度先升后降,在AN质量分数为5%,EPDM质量分数为25%时达到最大值76.8kJ/m2,拉伸和弯曲强度逐步下降。扫描电镜(SEM)和差示扫描热(DSC)分析表明,在EPDM质量分数为15%时,共混物室温条件下受外界冲击发生脆韧转变,EPDM-g-MAN与SAN具有较好的相容性。TG分析表明,随着EPDM含量增加,EPDM-g-MAN/SAN共混物的热失重起始温度有所上升,热稳定性得到提高。  相似文献   

15.
Computer simulation and experiments were performed to investigate the miscibility of PLA/PEG blends with different PEG concentrations. Flory-Huggins interaction (χ) parameter used to predict the miscibility for the blends was estimated by molecular dynamic simulation of fully atomistic model. The calculated χ parameter and radial distribution function suggest that the PLA and PEG blends are likely miscible at low PEG concentrations (10–30 wt%), but they become apparently immiscible at higher PEG content (>50 wt%). This result is consistent with density distribution of PLA and PEG beads calculated from dissipative particle dynamics simulation of coarse-grained model. To support the computational results, experiments based on differential scanning calorimetry (DSC) and rheometry were also performed. The DSC thermograms of 90:10, 80:20, and 70:30 (wt/wt) of PLA/PEG blends showed a single glass transition and PLA melting peak, indicating PLA/PEG is miscible over this composition. In rheometry, frequency (ω) dependence of storage moduli (G′) at low frequencies for 75:25 and 70:30 blends indicate that these samples are near the phase separation point.  相似文献   

16.
以4,4-二苯基甲烷二异氰酸酯(MDI)为反应增容剂,采用熔融共混法制备了不同MDI含量的聚乳酸/热塑性聚氨酯(PLA/TPU)共混物,采用傅里叶变换红外光谱仪(FTIR)、万能试验机、冲击试验机、扫描电子显微镜(SEM)、差示扫描量热仪(DSC)和旋转流变仪对共混物力学性能、微观形态、热性能和流变性能进行了研究。结果表明:MDI可以有效改善共混物的力学性能,当MDI质量分数为1%时,共混物力学性能最佳,缺口冲击强度为40.0kJ/m2,断裂伸长率为214.1%,与未加MDI的共混物相比,分别增加了4.3倍和5.8倍,拉伸强度稍有下降(47.6MPa);SEM表明,MDI的加入提高了共混物的相容性,加入MDI后,共混物的断面由海-岛结构变为核-壳包覆结构,相界面作用力增强;DSC测试表明,共混物的玻璃化转变温度、冷结晶温度和熔融温度随着MDI含量的增加而升高;流变测试表明,MDI质量分数的增加,共混物呈现更显著的剪切变稀行为,推测共混反应机理为:MDI质量分数的增加,体系内依次发生PLA的扩链、支化和TPU的交联。  相似文献   

17.
分别采用磷酸三对仲丁基苯基酯(TBPP)和邻苯二甲酸二辛酯(DOP)作为相容剂制备了聚氯烯(PVC)/回收聚乙烯(RPE)共混材料;利用差示扫描量热仪(DSC)研究了共混材料的玻璃化转变温度(Tg)和结晶度,结果表明:与DOP相比,磷酸酯能有效提高共混材料中RPE的结晶度。热变形性能测试结果表明:磷酸酯改性的共混体系具有较好的抗热变形能力。力学性能测试结果表明:磷酸酯改性的共混材料拉伸性能和弯曲性能得到了明显的提高,与空白相比,磷酸酯的添加量为5份时,拉伸强度和弯曲强度分别提高了26%和8%,而DOP改性的共混材料相应的强度提高率仅为22%和2%;磷酸酯改性的共混体系冲击强度保持率为83%,而DOP改性的共混材料的冲击强度保持率为76%。  相似文献   

18.
以制备的具有微/纳多孔结构的纤维素为骨架,聚乙二醇(PEG)-4000为相变基,通过吸附―混合机制制备出不同PEG含量的多孔纤维素/PEG复合相变粉体材料(PCMs)。傅里叶变换红外光谱、扫描电子显微镜分析和复合相变粉体孔隙率测定结果表明,多孔纤维素与PEG能很好地相互结合;X射线衍射、差示扫描量热及热重分析结果表明,PCMs相变焓随PEG含量的增加而逐渐增加,PEG理论含量为50%(wt)时,多孔纤维素/PEG复合相变粉体相变焓值为95.53 J/g。多孔纤维素/PEG复合相变粉体的热稳定性好。  相似文献   

19.
采用二乙醇胺为降解剂对废旧聚氨酯(PU)硬泡进行降解处理,制备了降解PU/聚丙烯(PP)共混材料;研究了不同降解程度的PU硬泡对PU/PP/PP-g-MA共混材料性能的影响。结果表明:随着降解时间的增加,PU硬泡的凝胶的质量分数由91.4%下降到3.6%,降解产物的玻璃化转变温度由75℃下降到36℃;FTIR证明了降解产生了带有氨基和羟基基团的PU,这些基团成为反应增容的活性点;PU/PP/PP-g-MA复合材料的断裂伸长率由100%上升到1800%,SEM表明复合材料具有有良好的均匀性和相互作用。  相似文献   

20.
何丽红  王浩  杨帆  朱洪洲  唐伯明 《化工进展》2018,37(3):1076-1083
利用多孔二氧化硅的良好吸附性,将不同计量的聚乙二醇在硅溶胶胶凝过程中吸附于硅凝胶的孔隙结构中制备聚乙二醇/二氧化硅定形相变材料(PEG/SiO2 SSPCM);并将其与熔融沥青共混获得不同聚乙二醇含量的沥青-定形相变材料(Asphalt-SSPCM)。借助孔径分析仪和扫描电镜(SEM)表征了载体二氧化硅孔结构和PEG/SiO2 SSPCM的表观形貌;通过X射线衍射仪(XRD)、综合热分析仪(DSC/TG)和傅里叶红外光谱仪(FTIR)考察了沥青中PEG/SiO2 SSPCM的晶体结构、储热性能、热稳定性及化学兼容性;通过本文作者课题组研发的温度模拟试验箱测试了Asphalt-SSPCM的降温效果。结果表明,二氧化硅凝胶具有丰富的孔结构并能将聚乙二醇吸附于其介孔结构中;沥青中PEG/SiO2 SSPCM仍含有聚乙二醇晶体,其储热能力随聚乙二醇含量的增加而增大,当聚乙二醇含量为76.1%时,相变焓高达117.5J/g,且不同聚乙二醇含量的沥青-定形相变材料均表现出良好的热稳定性;PEG/SiO2 SSPCM与沥青的化学兼容性良好,二者之间仅是物理作用;Asphalt-SSPCM的降温效果显著,可有效改善沥青路面的高温性能;并基于相变理论,分析了沥青-定形相变材料的相变储热原理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号