首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrastructure of fog is a complex system due to the large number of heterogeneous resources that need to be shared. The embedded devices deployed with the Internet of Things (IoT) technology have increased since the past few years, and these devices generate huge amount of data. The devices in IoT can be remotely connected and might be placed in different locations which add to the network delay. Real time applications require high bandwidth with reduced latency to ensure Quality of Service (QoS). To achieve this, fog computing plays a vital role in processing the request locally with the nearest available resources by reduced latency. One of the major issues to focus on in a fog service is managing and allocating resources. Queuing theory is one of the most popular mechanisms for task allocation. In this work, an efficient model is designed to improve QoS with the efficacy of resource allocation based on a Queuing Theory based Cuckoo Search (QTCS) model which will optimize the overall resource management process.  相似文献   

2.
According to the advances in users’ service requirements, physical hardware accessibility, and speed of resource delivery, Cloud Computing (CC) is an essential technology to be used in many fields. Moreover, the Internet of Things (IoT) is employed for more communication flexibility and richness that are required to obtain fruitful services. A multi-agent system might be a proper solution to control the load balancing of interaction and communication among agents. This paper proposes a multi-agent load balancing framework that consists of two phases to optimize the workload among different servers with large-scale CC power with various utilities and a significant number of IoT devices with low resources. Different agents are integrated based on relevant features of behavioral interaction using classification techniques to balance the workload. A load balancing algorithm is developed to serve users’ requests to improve the solution of workload problems with an efficient distribution. The activity task from IoT devices has been classified by feature selection methods in the preparatory phase to optimize the scalability of CC. Then, the server’s availability is checked and the classified task is assigned to its suitable server in the main phase to enhance the cloud environment performance. Multi-agent load balancing framework is succeeded to cope with the importance of using large-scale requirements of CC and (low resources and large number) of IoT.  相似文献   

3.
Edge Computing is a new technology in Internet of Things (IoT) paradigm that allows sensitive data to be sent to disperse devices quickly and without delay. Edge is identical to Fog, except its positioning in the end devices is much nearer to end-users, making it process and respond to clients in less time. Further, it aids sensor networks, real-time streaming apps, and the IoT, all of which require high-speed and dependable internet access. For such an IoT system, Resource Scheduling Process (RSP) seems to be one of the most important tasks. This paper presents a RSP for Edge Computing (EC). The resource characteristics are first standardized and normalized. Next, for task scheduling, a Fuzzy Control based Edge Resource Scheduling (FCERS) is suggested. The results demonstrate that this technique enhances resource scheduling efficiency in EC and Quality of Service (QoS). The experimental study revealed that the suggested FCERS method in this work converges quicker than the other methods. Our method reduces the total computing cost, execution time, and energy consumption on average compared to the baseline. The ES allocates higher processing resources to each user in case of limited availability of MDs; this results in improved task execution time and a reduced total task computation cost. Additionally, the proposed FCERS m 1m may more efficiently fetch user requests to suitable resource categories, increasing user requirements.  相似文献   

4.
The Internet of Things (IoT) is gaining attention because of its broad applicability, especially by integrating smart devices for massive communication during sensing tasks. IoT-assisted Wireless Sensor Networks (WSN) are suitable for various applications like industrial monitoring, agriculture, and transportation. In this regard, routing is challenging to find an efficient path using smart devices for transmitting the packets towards big data repositories while ensuring efficient energy utilization. This paper presents the Robust Cluster Based Routing Protocol (RCBRP) to identify the routing paths where less energy is consumed to enhances the network lifespan. The scheme is presented in six phases to explore flow and communication. We propose the two algorithms: i) energy-efficient clustering and routing algorithm and ii) distance and energy consumption calculation algorithm. The scheme consumes less energy and balances the load by clustering the smart devices. Our work is validated through extensive simulation using Matlab. Results elucidate the dominance of the proposed scheme is compared to counterparts in terms of energy consumption, the number of packets received at BS and the number of active and dead nodes. In the future, we shall consider edge computing to analyze the performance of robust clustering.  相似文献   

5.
Currently, the Internet of Things (IoT) is revolutionizing communication technology by facilitating the sharing of information between different physical devices connected to a network. To improve control, customization, flexibility, and reduce network maintenance costs, a new Software-Defined Network (SDN) technology must be used in this infrastructure. Despite the various advantages of combining SDN and IoT, this environment is more vulnerable to various attacks due to the centralization of control. Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service (DDoS) attacks, but they often lack mechanisms to mitigate their severity. This paper proposes a Multi-Attack Intrusion Detection System (MAIDS) for Software-Defined IoT Networks (SDN-IoT). The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms. First, a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets: the Network Security Laboratory Knowledge Discovery in Databases (NSL-KDD) and the Canadian Institute for Cybersecurity Intrusion Detection Systems (CICIDS2017), to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems. The algorithms evaluated include Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR). Second, an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems (IDS) was developed to enable effective comparison between the datasets used in the development of the security scheme. The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system, with average accuracies of 99.88% and 99.89%, respectively. Furthermore, the proposed security scheme reduced the false alarm rate by 33.23%, which is a significant improvement over prevalent schemes. Finally, tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset, making it the best for IDS compared to the NSL-KDD dataset.  相似文献   

6.
Wireless Sensor Networks (WSNs) can be termed as an auto-configured and infrastructure-less wireless networks to monitor physical or environmental conditions, such as temperature, sound, vibration, pressure and motion etc. WSNs may comprise thousands of Internet of Things (IoT) devices to sense and collect data from its surrounding, process the data and take an automated and mechanized decision. On the other side the proliferation of these devices will soon cause radio spectrum shortage. So, to facilitate these networks, we integrate Cognitive Radio (CR) functionality in these networks. CR can sense the unutilized spectrum of licensed users and then use these empty bands when required. In order to keep the IoT nodes functional all time, continuous energy is required. For this reason the energy harvested techniques are preferred in IoT networks. Mainly it is preferred to harvest Radio Frequency (RF) energy in the network. In this paper a region based multi-channel architecture is proposed. In which the coverage area of primary node is divided as Energy Harvesting Region and Communication Region. The Secondary User (SU) that are the licensed user is IoT enabled with Cognitive Radio (CR) techniques so we call it CR-enabled IoT node/device and is encouraged to harvest energy by utilizing radio frequency energy. To harvest energy efficiently and to reduce the energy consumption during sensing, the concept of overlapping region is given that supports to sense multiple channels simultaneously and help the SU to find best channel for transmitting data or to harvest energy from the ideal channel. From the experimental analysis, it is proved that SU can harvest more energy in overlapping region and this architecture proves to consume less energy during data transmission as compared to single channel. We also show that channel load can be highly reduced and channel utilization is proved to be more proficient. Thus, this proves the proposed architecture cost-effective and energy-efficient.  相似文献   

7.
In the last decade, IoT has been widely used in smart cities, autonomous driving and Industry 4.0, which lead to improve efficiency, reliability, security and economic benefits. However, with the rapid development of new technologies, such as cognitive communication, cloud computing, quantum computing and big data, the IoT security is being confronted with a series of new threats and challenges. IoT device identification via Radio Frequency Fingerprinting (RFF) extracting from radio signals is a physical-layer method for IoT security. In physical-layer, RFF is a unique characteristic of IoT device themselves, which can difficultly be tampered. Just as people’s unique fingerprinting, different IoT devices exhibit different RFF which can be used for identification and authentication. In this paper, the structure of IoT device identification is proposed, the key technologies such as signal detection, RFF extraction, and classification model is discussed. Especially, based on the random forest and Dempster-Shafer evidence algorithm, a novel ensemble learning algorithm is proposed. Through theoretical modeling and experimental verification, the reliability and differentiability of RFF are extracted and verified, the classification result is shown under the real IoT device environments.  相似文献   

8.
With the popularity of green computing and the huge usage of networks, there is an acute need for expansion of the 5G network. 5G is used where energy efficiency is the highest priority, and it can play a pinnacle role in helping every industry to hit sustainability. While in the 5G network, conventional performance guides, such as network capacity and coverage are still major issues and need improvements. Device to Device communication (D2D) communication technology plays an important role to improve the capacity and coverage of 5G technology using different techniques. The issue of energy utilization in the IoT based system is a significant exploration center. Energy optimization in D2D communication is an important point. We need to resolve this issue for increasing system performance. Green IoT speaks to the issue of lessening energy utilization of IoT gadgets which accomplishes a supportable climate for IoT systems. In this paper, we improve the capacity and coverage of 5G technology using Multiple Inputs Multiple Outputs (MU-MIMO). MU-MIMO increases the capacity of 5G in D2D communication. We also present all the problems faced by 5G technology and proposed architecture to enhance system performance.  相似文献   

9.
Nowadays, there is a significant need for maintenance free modern Internet of things (IoT) devices which can monitor an environment. IoT devices such as these are mobile embedded devices which provide data to the internet via Low Power Wide Area Network (LPWAN). LPWAN is a promising communications technology which allows machine to machine (M2M) communication and is suitable for small mobile embedded devices. The paper presents a novel data-driven self-learning (DDSL) controller algorithm which is dedicated to controlling small mobile maintenance-free embedded IoT devices. The DDSL algorithm is based on a modified Q-learning algorithm which allows energy efficient data-driven behavior of mobile embedded IoT devices. The aim of the DDSL algorithm is to dynamically set operation duty cycles according to the estimation of future collected data values, leading to effective operation of power-aware systems. The presented novel solution was tested on a historical data set and compared with a fixed duty cycle reference algorithm. The root mean square error (RMSE) and measurements parameters considered for the DDSL algorithm were compared to a reference algorithm and two independent criteria (the performance score parameter and normalized geometric distance) were used for overall evaluation and comparison. The experiments showed that the novel DDSL method reaches significantly lower RMSE while the number of transmitted data count is less than or equal to the fixed duty cycle algorithm. The overall criteria performance score is 40% higher than the reference algorithm base on static confirmation settings.  相似文献   

10.
Mobile edge cloud networks can be used to offload computationally intensive tasks from Internet of Things (IoT) devices to nearby mobile edge servers, thereby lowering energy consumption and response time for ground mobile users or IoT devices. Integration of Unmanned Aerial Vehicles (UAVs) and the mobile edge computing (MEC) server will significantly benefit small, battery-powered, and energy-constrained devices in 5G and future wireless networks. We address the problem of maximising computation efficiency in U-MEC networks by optimising the user association and offloading indicator (OI), the computational capacity (CC), the power consumption, the time duration, and the optimal location planning simultaneously. It is possible to assign some heavy tasks to the UAV for faster processing and small ones to the mobile users (MUs) locally. This paper utilizes the k-means clustering algorithm, the interior point method, and the conjugate gradient method to iteratively solve the non-convex multi-objective resource allocation problem. According to simulation results, both local and offloading schemes give optimal solution.  相似文献   

11.
In recent times, the evolution of blockchain technology has got huge attention from the research community due to its versatile applications and unique security features. The IoT has shown wide adoption in various applications including smart cities, healthcare, trade, business, etc. Among these applications, fitness applications have been widely considered for smart fitness systems. The users of the fitness system are increasing at a high rate thus the gym providers are constantly extending the fitness facilities. Thus, scheduling such a huge number of requests for fitness exercise is a big challenge. Secondly, the user fitness data is critical thus securing the user fitness data from unauthorized access is also challenging. To overcome these issues, this work proposed a blockchain-based load-balanced task scheduling approach. A thorough analysis has been performed to investigate the applications of IoT in the fitness industry and various scheduling approaches. The proposed scheduling approach aims to schedule the requests of the fitness users in a load-balanced way that maximize the acceptance rate of the users’ requests and improve resource utilization. The performance of the proposed task scheduling approach is compared with the state-of-the-art approaches concerning the average resource utilization and task rejection ratio. The obtained results confirm the efficiency of the proposed scheduling approach. For investigating the performance of the blockchain, various experiments are performed using the Hyperledger Caliper concerning latency, throughput, resource utilization. The Solo approach has shown an improvement of 32% and 26% in throughput as compared to Raft and Solo-Raft approaches respectively. The obtained results assert that the proposed architecture is applicable for resource-constrained IoT applications and is extensible for different IoT applications.  相似文献   

12.
Due to the explosion of network data traffic and IoT devices, edge servers are overloaded and slow to respond to the massive volume of online requests. A large number of studies have shown that edge caching can solve this problem effectively. This paper proposes a distributed edge collaborative caching mechanism for Internet online request services scenario. It solves the problem of large average access delay caused by unbalanced load of edge servers, meets users’ differentiated service demands and improves user experience. In particular, the edge cache node selection algorithm is optimized, and a novel edge cache replacement strategy considering the differentiated user requests is proposed. This mechanism can shorten the response time to a large number of user requests. Experimental results show that, compared with the current advanced online edge caching algorithm, the proposed edge collaborative caching strategy in this paper can reduce the average response delay by 9%. It also increases the user utility by 4.5 times in differentiated service scenarios, and significantly reduces the time complexity of the edge caching algorithm.  相似文献   

13.
The term IoT refers to the interconnection and exchange of data among devices/sensors. IoT devices are often small, low cost, and have limited resources. The IoT issues and challenges are growing increasingly. Security and privacy issues are among the most important concerns in IoT applications, such as smart buildings. Remote cybersecurity attacks are the attacks which do not require physical access to the IoT networks, where the attacker can remotely access and communicate with the IoT devices through a wireless communication channel. Thus, remote cybersecurity attacks are a significant threat. Emerging applications in smart environments such as smart buildings require remote access for both users and resources. Since the user/building communication channel is insecure, a lightweight and secure authentication protocol is required. In this paper, we propose a new secure remote user mutual authentication protocol based on transitory identities and multi-factor authentication for IoT smart building environment. The protocol ensures that only legitimate users can authenticate with smart building controllers in an anonymous, unlinkable, and untraceable manner. The protocol also avoids clock synchronization problem and can resist quantum computing attacks. The security of the protocol is evaluated using two different methods: (1) informal analysis; (2) model check using the automated validation of internet security protocols and applications (AVISPA) toolkit. The communication overhead and computational cost of the proposed are analyzed. The security and performance analysis show that our protocol is secure and efficient.  相似文献   

14.
With the popularization of terminal devices and services in Internet of things (IoT), it will be a challenge to design a network resource allocation method meeting various QoS requirements and effectively using substrate resources. In this paper, a dynamic network slicing mechanism including virtual network (VN) mapping and VN reconfiguration is proposed to provide network slices for services. Firstly, a service priority model is defined to create queue for resource allocation. Then a slice including Virtual Network Function (VNF) placement and routing with optimal cost is generated by VN mapping. Next, considering temporal variations of service resource requirements, the size of network slice is adjusted dynamically to guarantee resource utilization in VN reconfiguration. Additionally, load balancing factors are designed to make traffic balanced. Simulation results show that dynamic slicing mechanism not only saves 22% and 31% cost than static slicing mechanism with extending shortest path (SS_ESP) and dynamic slicing mechanism with embedding single path (DS_ESP), but also maintains high service acceptance rate.  相似文献   

15.
Smart irrigation system, also referred as precision irrigation system, is an attractive solution to save the limited water resources as well as to improve crop productivity and quality. In this work, by using Internet of things (IoT), we aim to design a smart irrigation system for olive groves. In such IoT system, a huge number of low-power and low-complexity devices (sensors, actuators) are interconnected. Thus, a great challenge is to satisfy the increasing demands in terms of spectral efficiency. Moreover, securing the IoT system is also a critical challenge, since several types of cybersecurity threats may pose. In this paper, we address these issues through the application of the massive multiple-input multiple-output (M-MIMO) technology. Indeed, M-MIMO is a key technology of the fifth generation (5G) networks and has the potential to improve spectral efficiency as well as the physical layer security. Specifically, by exploiting the available M-MIMO channel degrees of freedom, we propose a physical layer security scheme based on artificial noise (AN) to prevent eavesdropping. Numerical results demonstrate that our proposed scheme outperforms traditional ones in terms of spectral efficiency and secrecy rate.  相似文献   

16.
With the explosive advancements in wireless communications and digital electronics, some tiny devices, sensors, became a part of our daily life in numerous fields. Wireless sensor networks (WSNs) is composed of tiny sensor devices. WSNs have emerged as a key technology enabling the realization of the Internet of Things (IoT). In particular, the sensor-based revolution of WSN-based IoT has led to considerable technological growth in nearly all circles of our life such as smart cities, smart homes, smart healthcare, security applications, environmental monitoring, etc. However, the limitations of energy, communication range, and computational resources are bottlenecks to the widespread applications of this technology. In order to tackle these issues, in this paper, we propose an Energy-efficient Transmission Range Optimized Model for IoT (ETROMI), which can optimize the transmission range of the sensor nodes to curb the hot-spot problem occurring in multi-hop communication. In particular, we maximize the transmission range by employing linear programming to alleviate the sensor nodes’ energy consumption and considerably enhance the network longevity compared to that achievable using state-of-the-art algorithms. Through extensive simulation results, we demonstrate the superiority of the proposed model. ETROMI is expected to be extensively used for various smart city, smart home, and smart healthcare applications in which the transmission range of the sensor nodes is a key concern.  相似文献   

17.
Wireless Sensor Network is considered as the intermediate layer in the paradigm of Internet of things (IoT) and its effectiveness depends on the mode of deployment without sacrificing the performance and energy efficiency. WSN provides ubiquitous access to location, the status of different entities of the environment and data acquisition for long term IoT monitoring. Achieving the high performance of the WSN-IoT network remains to be a real challenge since the deployment of these networks in the large area consumes more power which in turn degrades the performance of the networks. So, developing the robust and QoS (quality of services) aware energy-efficient routing protocol for WSN assisted IoT devices needs its brighter light of research to enhance the network lifetime. This paper proposed a Hybrid Energy Efficient Learning Protocol (HELP). The proposed protocol leverages the multi-tier adaptive framework to minimize energy consumption. HELP works in a two-tier mechanism in which it integrates the powerful Extreme Learning Machines for clustering framework and employs the zonal based optimization technique which works on hybrid Whale-dragonfly algorithms to achieve high QoS parameters. The proposed framework uses the sub-area division algorithm to divide the network area into different zones. Extreme learning machines (ELM) which are employed in this framework categories the Zone's Cluster Head (ZCH) based on distance and energy. After categorizing the zone's cluster head, the optimal routing path for an energy-efficient data transfer will be selected based on the new hybrid whale-swarm algorithms. The extensive simulations were carried out using OMNET++-Python user-defined plugins by injecting the dynamic mobility models in networks to make it a more realistic environment. Furthermore, the effectiveness of the proposed HELP is examined against the existing protocols such as LEACH, M-LEACH, SEP, EACRP and SEEP and results show the proposed framework has outperformed other techniques in terms of QoS parameters such as network lifetime, energy, latency.  相似文献   

18.
Despite the seemingly exponential growth of mobile and wireless communication, this same technology aims to offer uninterrupted access to different wireless systems like Radio Communication, Bluetooth, and Wi-Fi to achieve better network connection which in turn gives the best quality of service (QoS). Many analysts have established many handover decision systems (HDS) to enable assured continuous mobility between various radio access technologies. Unbroken mobility is one of the most significant problems considered in wireless communication networks. Each application needs a distinct QoS, so the network choice may shift appropriately. To achieve this objective and to choose the finest networks, it is important to select a best decision making algorithm that chooses the most effective network for every application that the user requires, dependent on QoS measures. Therefore, the main goal of the proposed system is to provide an enhanced vertical handover (VHO) decision making program by using a Multi-Criteria Fuzzy-Based algorithm to choose the best network. Enhanced Multi-Criteria algorithms and a Fuzzy-Based algorithm is implemented successfully for optimal network selection and also to minimize the probability of false handover. Furthermore, a double packet buffer is utilized to decrease the packet loss by 1.5% and to reduce the number of handovers up to 50% compared to the existing systems. In addition, the network setup has an optimized mobility management system to supervise the movement of the mobile nodes.  相似文献   

19.
One of the most rapidly growing areas in the last few years is the Internet of Things (IoT), which has been used in widespread fields such as healthcare, smart homes, and industries. Android is one of the most popular operating systems (OS) used by IoT devices for communication and data exchange. Android OS captured more than 70 percent of the market share in 2021. Because of the popularity of the Android OS, it has been targeted by cybercriminals who have introduced a number of issues, such as stealing private information. As reported by one of the recent studies Android malware are developed almost every 10 s. Therefore, due to this huge exploitation an accurate and secure detection system is needed to secure the communication and data exchange in Android IoT devices. This paper introduces Droid-IoT, a collaborative framework to detect Android IoT malicious applications by using the blockchain technology. Droid-IoT consists of four main engines: (i) collaborative reporting engine, (ii) static analysis engine, (iii) detection engine, and (iv) blockchain engine. Each engine contributes to the detection and minimization of the risk of malicious applications and the reporting of any malicious activities. All features are extracted automatically from the inspected applications to be classified by the machine learning model and store the results into the blockchain. The performance of Droid-IoT was evaluated by analyzing more than 6000 Android applications and comparing the detection rate of Droid-IoT with the state-of-the-art tools. Droid-IoT achieved a detection rate of 97.74% with a low false positive rate by using an extreme gradient boosting (XGBoost) classifier.  相似文献   

20.
Internet of Things (IoT) defines a network of devices connected to the internet and sharing a massive amount of data between each other and a central location. These IoT devices are connected to a network therefore prone to attacks. Various management tasks and network operations such as security, intrusion detection, Quality-of-Service provisioning, performance monitoring, resource provisioning, and traffic engineering require traffic classification. Due to the ineffectiveness of traditional classification schemes, such as port-based and payload-based methods, researchers proposed machine learning-based traffic classification systems based on shallow neural networks. Furthermore, machine learning-based models incline to misclassify internet traffic due to improper feature selection. In this research, an efficient multilayer deep learning based classification system is presented to overcome these challenges that can classify internet traffic. To examine the performance of the proposed technique, Moore-dataset is used for training the classifier. The proposed scheme takes the pre-processed data and extracts the flow features using a deep neural network (DNN). In particular, the maximum entropy classifier is used to classify the internet traffic. The experimental results show that the proposed hybrid deep learning algorithm is effective and achieved high accuracy for internet traffic classification, i.e., 99.23%. Furthermore, the proposed algorithm achieved the highest accuracy compared to the support vector machine (SVM) based classification technique and k-nearest neighbours (KNNs) based classification technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号