首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the continuous expansion of software scale, software update and maintenance have become more and more important. However, frequent software code updates will make the software more likely to introduce new defects. So how to predict the defects quickly and accurately on the software change has become an important problem for software developers. Current defect prediction methods often cannot reflect the feature information of the defect comprehensively, and the detection effect is not ideal enough. Therefore, we propose a novel defect prediction model named ITNB (Improved Transfer Naive Bayes) based on improved transfer Naive Bayesian algorithm in this paper, which mainly considers the following two aspects: (1) Considering that the edge data of the test set may affect the similarity calculation and final prediction result, we remove the edge data of the test set when calculating the data similarity between the training set and the test set; (2) Considering that each feature dimension has different effects on defect prediction, we construct the calculation formula of training data weight based on feature dimension weight and data gravity, and then calculate the prior probability and the conditional probability of training data from the weight information, so as to construct the weighted bayesian classifier for software defect prediction. To evaluate the performance of the ITNB model, we use six datasets from large open source projects, namely Bugzilla, Columba, Mozilla, JDT, Platform and PostgreSQL. We compare the ITNB model with the transfer Naive Bayesian (TNB) model. The experimental results show that our ITNB model can achieve better results than the TNB model in terms of accurary, precision and pd for within-project and cross-project defect prediction.  相似文献   

2.
Software defect prediction plays a very important role in software quality assurance, which aims to inspect as many potentially defect-prone software modules as possible. However, the performance of the prediction model is susceptible to high dimensionality of the dataset that contains irrelevant and redundant features. In addition, software metrics for software defect prediction are almost entirely traditional features compared to the deep semantic feature representation from deep learning techniques. To address these two issues, we propose the following two solutions in this paper: (1) We leverage a novel non-linear manifold learning method - SOINN Landmark Isomap (SLIsomap) to extract the representative features by selecting automatically the reasonable number and position of landmarks, which can reveal the complex intrinsic structure hidden behind the defect data. (2) We propose a novel defect prediction model named DLDD based on hybrid deep learning techniques, which leverages denoising autoencoder to learn true input features that are not contaminated by noise, and utilizes deep neural network to learn the abstract deep semantic features. We combine the squared error loss function of denoising autoencoder with the cross entropy loss function of deep neural network to achieve the best prediction performance by adjusting a hyperparameter. We compare the SL-Isomap with seven state-of-the-art feature extraction methods and compare the DLDD model with six baseline models across 20 open source software projects. The experimental results verify that the superiority of SL-Isomap and DLDD on four evaluation indicators.  相似文献   

3.
张志晟  张雷洪 《包装工程》2020,41(19):259-266
目的 现有的易拉罐缺陷检测系统在高速生产线中存在错检率和漏检率高,检测精度相对较低等问题,为了提高易拉罐缺陷识别的准确性,使易拉罐生产线实现进一步自动化、智能化,基于深度学习技术和迁移学习技术,提出一种适用于易拉罐制造的在线检测的算法。方法 利用深度卷积网络提取易拉罐缺陷特征,通过优化卷积核,减短易拉罐缺陷检测的时间。针对国内外数据集缺乏食品包装制造的缺陷图像,构建易拉罐缺陷数据集,结合预训练网络,通过调整VGG16提升对易拉罐缺陷的识别准确率。结果 对易拉罐数据集在卷积神经网络、迁移学习和调整后的预训练网络进行了易拉罐缺陷检测的性能对比,验证了基于深度学习的易拉罐缺陷检测技术在学习率为0.0005,训练10个迭代后可达到较好的识别效果,最终二分类缺陷识别率为99.7%,算法耗时119 ms。结论 相较于现有的易拉罐检测算法,文中提出的基于深度学习的易拉罐检测算法的识别性能更优,智能化程度更高。同时,该研究有助于制罐企业利用深度学习等AI技术促进智能化生产,减少人力成本,符合国家制造业产业升级的策略,具有一定的实际意义。  相似文献   

4.
一种无监督学习的异常行为检测方法   总被引:1,自引:0,他引:1  
针对智能视频监控的需求,提出一种无监督学习的异常行为检测方法。首先,采用混合高斯模型建模提取出运动目标,对运动区域进行标记;然后提取运动区域内的光流信息,将其归一化成特征矩阵,并建立实时更新的特征矩阵观测序列;最后利用二维主成分分析(2DPCA)的重构原理对观测序列进行分析,根据重构特征矩阵与原特征矩阵的能量比来判断是否存在异常行为。基于不同数据库下的视频序列实验结果验证了所提方法的有效性。  相似文献   

5.
Software defect prediction plays an important role in software quality assurance. However, the performance of the prediction model is susceptible to the irrelevant and redundant features. In addition, previous studies mostly regard software defect prediction as a single objective optimization problem, and multi-objective software defect prediction has not been thoroughly investigated. For the above two reasons, we propose the following solutions in this paper: (1) we leverage an advanced deep neural network—StackedContractive AutoEncoder (SCAE) to extract the robust deep semantic features from the original defect features, which has stronger discrimination capacity for different classes (defective or non-defective). (2) we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimizethe advanced neural network—Extreme learning machine (ELM) based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE. We mainly consider two objectives. One objective is to maximize the performance of ELM, which refers to the benefit of the SMONGE model. Another objective is to minimize the output weight normof ELM, which is related to the cost of the SMONGE model. We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE modelwithout SCAE across 20 open source software projects. The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics.  相似文献   

6.
Software defect prediction is a research hotspot in the field of software engineering. However, due to the limitations of current machine learning algorithms, we can’t achieve good effect for defect prediction by only using machine learning algorithms. In previous studies, some researchers used extreme learning machine (ELM) to conduct defect prediction. However, the initial weights and biases of the ELM are determined randomly, which reduces the prediction performance of ELM. Motivated by the idea of search based software engineering, we propose a novel software defect prediction model named KAEA based on kernel principal component analysis (KPCA), adaptive genetic algorithm, extreme learning machine and Adaboost algorithm, which has three main advantages: (1) KPCA can extract optimal representative features by leveraging a nonlinear mapping function; (2) We leverage adaptive genetic algorithm to optimize the initial weights and biases of ELM, so as to improve the generalization ability and prediction capacity of ELM; (3) We use the Adaboost algorithm to integrate multiple ELM basic predictors optimized by adaptive genetic algorithm into a strong predictor, which can further improve the effect of defect prediction. To effectively evaluate the performance of KAEA, we use eleven datasets from large open source projects, and compare the KAEA with four machine learning basic classifiers, ELM and its three variants. The experimental results show that KAEA is superior to these baseline models in most cases.  相似文献   

7.
Data is always a crucial issue of concern especially during its prediction and computation in digital revolution. This paper exactly helps in providing efficient learning mechanism for accurate predictability and reducing redundant data communication. It also discusses the Bayesian analysis that finds the conditional probability of at least two parametric based predictions for the data. The paper presents a method for improving the performance of Bayesian classification using the combination of Kalman Filter and K-means. The method is applied on a small dataset just for establishing the fact that the proposed algorithm can reduce the time for computing the clusters from data. The proposed Bayesian learning probabilistic model is used to check the statistical noise and other inaccuracies using unknown variables. This scenario is being implemented using efficient machine learning algorithm to perpetuate the Bayesian probabilistic approach. It also demonstrates the generative function for Kalman-filer based prediction model and its observations. This paper implements the algorithm using open source platform of Python and efficiently integrates all different modules to piece of code via Common Platform Enumeration (CPE) for Python.  相似文献   

8.
李建明  杨挺  王惠栋 《包装工程》2020,41(7):175-184
目的针对目前工业自动化生产中基于人工特征提取的包装缺陷检测方法复杂、专业知识要求高、通用性差、在多目标和复杂背景下难以应用等问题,研究基于深度学习的实时包装缺陷检测方法。方法在样本数据较少的情况下,提出一种基于深度学习的Inception-V3图像分类算法和YOLO-V3目标检测算法相结合的缺陷检测方法,并设计完整的基于计算机视觉的在线包装缺陷检测系统。结果实验结果显示,该方法的识别准确率为99.49%,方差为0.0000506,只使用Inception-V3算法的准确率为97.70%,方差为0.000251。结论相比一般基于人工特征提取的包装缺陷检测方法,避免了复杂的特征提取过程。相比只应用图像分类算法进行包装缺陷检测,该方法在包装缺陷区域占比较小的情况下能较明显地提高包装缺陷检测精度和稳定性,在复杂检测背景和多目标场景中体现优势。该缺陷检测系统和检测方法可以很容易地迁移到其他类似在线检测问题上。  相似文献   

9.
杨静文  陈小勇  张军华 《包装工程》2022,43(13):203-208
目的 节省电流体喷射打印精度预测的时间和解决电流体工艺参数的选择问题,达到提高电流体打印的质量和效率的目的。方法 为了对电流体喷射打印精度进行预测,提出有限元模型与机器学习相结合的方法。基于线性回归、支持向量回归和神经网络等机器学习算法建立4种参数与射流直径的关系模型。结果 算法结果表明:支持向量回归和神经网络预测模型的决定系数R2能达到0.9以上,表示模型可信度高;支持向量回归和神经网络预测模型指标都比线性回归预测模型的小。结论 机器学习算法可对电喷印打印精度进行有效预测,预测效率提高了十几倍,节省了精度预测的时间。  相似文献   

10.
Data mining process involves a number of steps from data collection to visualization to identify useful data from massive data set. the same time, the recent advances of machine learning (ML) and deep learning (DL) models can be utilized for effectual rainfall prediction. With this motivation, this article develops a novel comprehensive oppositional moth flame optimization with deep learning for rainfall prediction (COMFO-DLRP) Technique. The proposed CMFO-DLRP model mainly intends to predict the rainfall and thereby determine the environmental changes. Primarily, data pre-processing and correlation matrix (CM) based feature selection processes are carried out. In addition, deep belief network (DBN) model is applied for the effective prediction of rainfall data. Moreover, COMFO algorithm was derived by integrating the concepts of comprehensive oppositional based learning (COBL) with traditional MFO algorithm. Finally, the COMFO algorithm is employed for the optimal hyperparameter selection of the DBN model. For demonstrating the improved outcomes of the COMFO-DLRP approach, a sequence of simulations were carried out and the outcomes are assessed under distinct measures. The simulation outcome highlighted the enhanced outcomes of the COMFO-DLRP method on the other techniques.  相似文献   

11.
The application of deep learning in the field of object detection has experienced much progress. However, due to the domain shift problem, applying an off-the-shelf detector to another domain leads to a significant performance drop. A large number of ground truth labels are required when using another domain to train models, demanding a large amount of human and financial resources. In order to avoid excessive resource requirements and performance drop caused by domain shift, this paper proposes a new domain adaptive approach to cross-domain vehicle detection. Our approach improves the cross-domain vehicle detection model from image space and feature space. We employ objectives of the generative adversarial network and cycle consistency loss for image style transfer in image space. For feature space, we align feature distributions between the source domain and the target domain to improve the detection accuracy. Experiments are carried out using the method with two different datasets, proving that this technique effectively improves the accuracy of vehicle detection in the target domain.  相似文献   

12.
The sewer system plays an important role in protecting rainfall and treating urban wastewater. Due to the harsh internal environment and complex structure of the sewer, it is difficult to monitor the sewer system. Researchers are developing different methods, such as the Internet of Things and Artificial Intelligence, to monitor and detect the faults in the sewer system. Deep learning is a promising artificial intelligence technology that can effectively identify and classify different sewer system defects. However, the existing deep learning based solution does not provide high accuracy prediction and the defect class considered for classification is very small, which can affect the robustness of the model in the constraint environment. As a result, this paper proposes a sewer condition monitoring framework based on deep learning, which can effectively detect and evaluate defects in sewer pipelines with high accuracy. We also introduce a large dataset of sewer defects with 20 different defect classes found in the sewer pipeline. This study modified the original RegNet model by modifying the squeeze excitation (SE) block and adding the dropout layer and Leaky Rectified Linear Units (LeakyReLU) activation function in the Block structure of RegNet model. This study explored different deep learning methods such as RegNet, ResNet50, very deep convolutional networks (VGG), and GoogleNet to train on the sewer defect dataset. The experimental results indicate that the proposed system framework based on the modified-RegNet (RegNet+) model achieves the highest accuracy of 99.5 compared with the commonly used deep learning models. The proposed model provides a robust deep learning model that can effectively classify 20 different sewer defects and be utilized in real-world sewer condition monitoring applications.  相似文献   

13.
By using efficient and timely medical diagnostic decision making, clinicians can positively impact the quality and cost of medical care. However, the high similarity of clinical manifestations between diseases and the limitation of clinicians’ knowledge both bring much difficulty to decision making in diagnosis. Therefore, building a decision support system that can assist medical staff in diagnosing and treating diseases has lately received growing attentions in the medical domain. In this paper, we employ a multi-label classification framework to classify the Chinese electronic medical records to establish corresponding relation between the medical records and disease categories, and compare this method with the traditional medical expert system to verify the performance. To select the best subset of patient features, we propose a feature selection method based on the composition and distribution of symptoms in electronic medical records and compare it with the traditional feature selection methods such as chi-square test. We evaluate the feature selection methods and diagnostic models from two aspects, false negative rate (FNR) and accuracy. Extensive experiments have conducted on a real-world Chinese electronic medical record database. The evaluation results demonstrate that our proposed feature selection method can improve the accuracy and reduce the FNR compare to the traditional feature selection methods, and the multi-label classification framework have better accuracy and lower FNR than the traditional expert system.  相似文献   

14.
目的 提升金属丝网的检测效率与检测精度。方法 提出一种应用于金属丝网表面缺陷识别的EfficientNetV2改进网络,首先更改了网络的骨干结构,在特征提取模块前后分别引入通道拆分与通道转换等操作,以增大网络容量,提高特征利用率;其次重新设计网络的分类器,通过对提取的高级语义信息进行逐层分步压缩,以减小特征损失,提高分类精度;最后搭建图像采集系统,构造金属丝网缺陷数据集。结果 实验结果表明,文中改进的网络模型在数据集上的准确率、精确度和特异度分别达到99.43%、99.42%和99.88%,图像识别耗时为27.5ms,增强了缺陷识别效果。结论 该方法具有较高的准确率,在金属丝网缺陷检测上具有较好的实用性,也可为其他类似产品的缺陷检测提供参考。  相似文献   

15.
针对弹性-粘弹性复合结构的动力学模型降阶问题,提出用Krylov子空间作为投影子空间进行模型减缩的方法。首先介绍了二阶时不变动力学模型的Krylov子空间的定义,并证明了经Krylov子空间方法降阶得到的模型具有与原模型的部分低频矩量相等的特性。然后给出了计算Krylov向量的算法。最后以一表面部分粘贴约束阻尼结构的正交异性悬臂板为例,分别用Krylov子空间方法和迭代动力缩聚法进行了模型降阶,并对原模型和降阶模型进行了频率响应分析,结果表明,采用Krylov子空间降阶后的模型能较好地保持原模型的动力学特性且降阶幅度大。  相似文献   

16.
目的 针对目前的瓷砖表面人工缺陷检测效率低的问题,提出一种基于深度学习YOLOv5算法实现对生产线瓷砖表面缺陷的检测。方法 首先对数据集进行切图分割与数据增强处理,再通过labelimg对数据集进行数据标注,然后将数据集送入到优化后的YOLOv5网络模型进行迭代训练,并将最优权重用于测试。结果 通过实验对比,YOLOv5模型的检测准确率高于Faster RCNN、SSD、YOLOv4这3种模型,其检测平均准确度高于96%,平均检测时间为14ms。结论 表明该方法能够检测生产过程中的瓷砖缺陷问题,在瓷砖缺陷检测上有一定的先进性和实用性。  相似文献   

17.
Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature. The stock data is usually non-stationary, and attributes are non-correlative to each other. Several traditional Stock Technical Indicators (STIs) may incorrectly predict the stock market trends. To study the stock market characteristics using STIs and make efficient trading decisions, a robust model is built. This paper aims to build up an Evolutionary Deep Learning Model (EDLM) to identify stock trends’ prices by using STIs. The proposed model has implemented the Deep Learning (DL) model to establish the concept of Correlation-Tensor. The analysis of the dataset of three most popular banking organizations obtained from the live stock market based on the National Stock exchange (NSE) – India, a Long Short Term Memory (LSTM) is used. The datasets encompassed the trading days from the 17 of Nov 2008 to the 15 of Nov 2018. This work also conducted exhaustive experiments to study the correlation of various STIs with stock price trends. The model built with an EDLM has shown significant improvements over two benchmark ML models and a deep learning one. The proposed model aids investors in making profitable investment decisions as it presents trend-based forecasting and has achieved a prediction accuracy of 63.59%, 56.25%, and 57.95% on the datasets of HDFC, Yes Bank, and SBI, respectively. Results indicate that the proposed EDLA with a combination of STIs can often provide improved results than the other state-of-the-art algorithms.  相似文献   

18.
In this study, a phase field model is established to simulate the microstructure formation during the solidification of dendrites by taking the Al-Cu-Mg ternary alloy as an example, and machine learning and deep learning methods are combined with the Kim-Kim-Suzuki (KKS) phase field model to predict the quasi-phase equilibrium. The paper first uses the least squares method to obtain the required data and then applies eight machine learning methods and five deep learning methods to train the quasi-phase equilibrium prediction models. After obtaining different models, this paper compares the reliability of the established models by using the test data and uses two evaluation criteria to analyze the performance of these models. This work find that the performance of the established deep learning models is generally better than that of the machine learning models, and the Multilayer Perceptron (MLP) based quasi-phase equilibrium prediction model achieves the best performance. Meanwhile the Convolutional Neural Network (CNN) based model also achieves competitive results. The experimental results show that the model proposed in this paper can predict the quasi-phase equilibrium of the KKS phase-field model accurately, which proves that it is feasible to combine machine learning and deep learning methods with phase-field model simulation.  相似文献   

19.
针对极限学习机在处理高维数据时存在内存能耗大、分类准确率低、泛化性差等问题,提出了一种批量分层编码极限学习机算法。首先通过对数据集分批处理,以减小数据维度,降低输入复杂性;然后采用多层自动编码器结构对各批次数据进行无监督编码,以实现深层特征提取;最后利用流形正则化思想构建含有继承因子的流形分类器,以保持数据的完整性,提高算法的泛化性能。实验结果表明,该方法实现简单,在NORB,MNIST和USPS数据集上的分类准确率分别可以达到92.16%、99.35%和98.86%,与其它极限学习机算法对比,在降低计算复杂度和减少CPU内存消耗上具有较明显的优势。  相似文献   

20.
王海杰  吴琼 《工业工程》2018,21(6):31-39
由于社交媒体上的信息传播具有广泛性和快速性,及时从社交媒体中挖掘汽车的缺陷信息对汽车厂商改进产品设计、优化质量管理具有指导意义。目前有关社交媒体缺陷识别的研究挖掘的缺陷信息较少且方法以聚类为主,效果不是很好。在现有关于社交媒体缺陷识别研究的基础上,结合企业的实际需求,扩展了具体的缺陷类别;基于朴素贝叶斯的分类方法详细对比了3种特征提取方法,并在此基础上结合EM算法实现了半监督的分类学习。实验结果表明,在缺陷类别划分符合企业实际需求的情况下,所提出的方法能够有效地识别出对应类别的缺陷,为企业缺陷管理提供决策支持,同时可以降低一半的人工标注成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号