首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the development of wireless mobile communication technology, the demand for wireless communication rate and frequency increases year by year. Existing wireless mobile communication frequency tends to be saturated, which demands for new solutions. Terahertz (THz) communication has great potential for the future mobile communications (Beyond 5G), and is also an important technique for the high data rate transmission in spatial information network. THz communication has great application prospects in military-civilian integration and coordinated development. In China, important breakthroughs have been achieved for the key techniques of THz high data rate communications, which is practically keeping up with the most advanced technological level in the world. Therefore, further intensifying efforts on the development of THz communication have the strategic importance for China in leading the development of future wireless communication techniques and the standardization process of Beyond 5G. This paper analyzes the performance of the MIMO channel in the Terahertz (THz) band and a discrete mathematical method is used to propose a novel channel model. Then, a channel capacity model is proposed by the combination of path loss and molecular absorption in the THz band based on the CSI at the receiver. Simulation results show that the integration of MIMO in the THz band gives better data rate and channel capacity as compared with a single channel.  相似文献   

2.
太赫兹(THz)波是频率位于0.1 THz^10 THz的电磁波。因其具有非电离性,以及可与多数生物分子产生共振响应等特性,在生物医学领域有着巨大应用潜力,尤其在肿瘤检测方面。太赫兹成像技术作为生物医学领域一种新的成像技术,吸引国内外多个研究小组对其开展深入研究。本文列举分析了多种太赫兹成像技术在肿瘤检测的应用,其中可分为太赫兹扫描成像、太赫兹层析成像、太赫兹全息成像以及太赫兹近场成像,介绍了这些成像方式的基本原理以及国内外研究现状,最后对太赫兹成像技术在生物领域的未来做出展望。  相似文献   

3.
A terahertz filter with a channel drop cavity and a resonant reflection cavity in a two-dimensional photonic crystal is theoretically proposed. The channel drop cavity is used to trap photons at resonant frequency from the bus waveguide through coupling and emit them to a drop waveguide, while the resonant reflection cavity is used to realize wavelength selective reflection feedback in the bus waveguide. The transmission properties of the terahertz filter are simulated using the finite element method. It is found that a peak with the central frequency of 1.12 THz is existed in the transmission spectrum. The full width at half maximum of the passband is only 5 GHz, and the peak drop efficiency is up to 94.8%.  相似文献   

4.
A novel experimental technique is introduced and used to measure the effect of frequency multiplication on the RF spectrum of an oscillator. This technique makes it possible to produce the RF spectrum at X band?where measurements are relatively straightforward?that would have been produced by frequency multiplication of the 5-MHz source to any frequency from 9.2 GHz to 100 THz (1014 Hz). A simplified theory is developed and shown to reproduce the experimental results for the relative power in the carrier and noise pedestal, and the shape and the width of the carrier and noise pedestal, to within the measurement uncertainty of 2 or 3 dB, from 5 MHz to 10 THz. The calculations are easily made using analytical techniques from the measurement of the spectral density of phase fluctuations of the source, the effective input spectrum density and the bandwidth of the multiplier chain, and the frequency multiplication factor. It is shown that present 5-MHz-crystal-controlled oscillators are useful as a precision source to ~500 GHz. Suggestions for extending their range to ~100 THz are made.  相似文献   

5.
The influence of the width of terahertz (THz) pulses on two-dimensional THz spectroscopy (2DTS) has been studied theoretically via a classical method in which the expressions for the second-order nonlinear polarizations with different nonlinear sources are derived by using a perturbation approach. Compared to the common disposal method in which the THz pulse is treated as a delta function, some terms that were of unknown physical meaning or vanished will come into force when the width is considered. Three types of nonlinear sources, i.e. anharmonicity, nonlinear damping and nonlinear coupling, are considered for a single mode system. The simulation results demonstrate that the width of the incident THz pulse can markedly affect the properties of 2DTS and that different sources have different influences. This study reveals a more practical insight for 2DTS and could provide much information, such as the optimal width and interval of THz pulses, to guide possible future experiments.  相似文献   

6.
太赫兹(THz)波对非极性材料有较好的穿透性,对生物医学组织无电离效应,因而非常适合无损检测、生物医学成像等应用。THz量子阱光电探测器(THz QWPs)具有响应速度快、响应率高、噪声等效功率低、体积小的特点。相较于其他探测器,THz QWPs作为成像系统接收器时,系统具有成像分辨率高、成像速度快、成像信噪比高、结构紧凑等优势。本文综述了基于THz QWPs的成像研究进展,并对成像系统核心指标的影响因素进行了分析和总结。采用更稳定的装置固定THz QWPs,提升器件响应速度、探测灵敏度、阵列规模,可以有效提升系统各项核心性能。  相似文献   

7.
Generation in one-dimensional photonic crystals of a single-cycle terahertz (THz) pulse via the optical rectification effect was studied by using the Green's function method. The bandwidth and the carrier frequency of the generated THz pulse are, respectively, in the range 2–8?THz and 2–18?THz. By decreasing the duration of the input pulses these ranges can be enlarged, but pulse shape is also deformed. The results show that by setting the carrier frequency of the input pulse on the edges of the gap, the amplitude of the generated THz pulse is maximized and its bandwidth is narrowed, but for carrier frequencies located inside the gap the situation is reversed. Moreover, by adjusting the carrier frequency of the input pulse on upper gaps few-cycles THz pulses are generated.  相似文献   

8.
Active control of metamaterial properties is critical for advanced terahertz (THz) applications. However, the tunability of THz properties, such as the resonance frequency and phase of the wave, remains challenging. Here, a new device design is provided for extensively tuning the resonance properties of THz metamaterials. Unlike previous approaches, the design is intended to control the electrical interconnections between the metallic unit structures of metamaterials. This strategy is referred to as the molecularization of the meta‐atoms and is accomplished by placing graphene bridges between the metallic unit structures whose conductivity is modulated by an electrolyte gating. Because of the scalable nature of the molecularization, the resonance frequency of the terahertz metamaterials can be tuned as a function of the number of meta‐atoms constituting a unit metamolecule. At the same time, the voltage‐controlled molecularization allows delicate control over the phase shift of the transmitted THz, without changing the high transmission of the materials significantly.  相似文献   

9.
本文立足于太赫兹波成像领域近年来备受关注的研究热点—太赫兹波计算鬼成像,首先回顾了鬼成像从量子到经典再到计算的历史过程,然后阐述了计算鬼成像的数学原理,随后综述了计算鬼成像在太赫兹波段的发展历程,及其在超衍射分辨成像、石墨烯光电导成像、太赫兹光谱成像等方面的应用,并在最后展望了太赫兹波计算鬼成像的发展前景:计算鬼成像作为一种成像手段,可以绕开在太赫兹频段缺乏经济高效的焦面阵列式探测器的难题,但目前的成像帧率还难以满足快速成像的应用需求,相信在未来随着器件性能的提升和成像算法的优化,其成像帧率可以得到大幅提升。  相似文献   

10.
Over the past decade, breakthroughs in the generation and control of ultrafast high-field terahertz (THz) radiation have led to new spectroscopic methodologies for the study of light-matter interactions in the strong-field limit. In this review, we will outline recent experimental demonstrations of non-linear THz material responses in materials ranging from molecular gases, to liquids, to varieties of solids – including semiconductors, nanocarbon, and correlated electron materials. New insights into how strong THz fields interact with matter will be discussed in which a THz field can act as either a non-resonant electric field or a broad bandwidth pulse driving specific resonances within it. As an emerging field, non-linear THz spectroscopy shows promise for elucidating dynamic problems associated with next generation electronics and optoelectronics, as well as for demonstrating control over collective material degrees of freedom.  相似文献   

11.
With the rapid development of the mobile internet and the internet of things (IoT), the fifth generation (5G) mobile communication system is seeing explosive growth in data traffic. In addition, low-frequency spectrum resources are becoming increasingly scarce and there is now an urgent need to switch to higher frequency bands. Millimeter wave (mmWave) technology has several outstanding features—it is one of the most well-known 5G technologies and has the capacity to fulfil many of the requirements of future wireless networks. Importantly, it has an abundant resource spectrum, which can significantly increase the communication rate of a mobile communication system. As such, it is now considered a key technology for future mobile communications. MmWave communication technology also has a more open network architecture; it can deliver varied services and be applied in many scenarios. By contrast, traditional, all-digital precoding systems have the drawbacks of high computational complexity and higher power consumption. This paper examines the implementation of a new hybrid precoding system that significantly reduces both calculational complexity and energy consumption. The primary idea is to generate several sub-channels with equal gain by dividing the channel by the geometric mean decomposition (GMD). In this process, the objective function of the spectral efficiency is derived, then the basic tracking principle and least square (LS) techniques are deployed to design the proposed hybrid precoding. Simulation results show that the proposed algorithm significantly improves system performance and reduces computational complexity by more than 45% compared to traditional algorithms.  相似文献   

12.
0.1THz光载太赫兹信号产生的新方法及特性分析   总被引:2,自引:2,他引:0  
针对备受国际通信行业关注的接入网成本压缩问题,本文研究了ToF系统中4倍频产生0.1 THz光载太赫兹信号的新方法,并对该方案进行了详细的特性分析.本文提出的太赫兹波产生方法,既满足超宽带,又满足系统稳定性,最大程度降低了成本.该方法根据马赫曾德尔调制器的响应函数,采用数学理论推导和仿真实验相结合的方法,提出了干扰信号抑制比的重要参数,阐明了串联后的调制器输出信号的倍频原理和模拟实验结果分析.结果表明,在如下参数区间内△Φ(87°,93°)U(267°,273°)、DCbias(1.31 V,1.68 V),系统可以保证产生性能良好的4倍频信号,为器件的研究提供可靠依据.  相似文献   

13.
太赫兹(THz)成像技术,因其具有能量低、透射率高、波谱范围宽等独特的分析能力,已经在生物医学、安全检查、航空航天等领域展现出巨大的优势及潜在的应用价值,但是较低的空间分辨率制约了太赫兹成像技术的进一步应用。太赫兹波通过具有适当折射率的介质结构产生的“太喷射”效应调控亚波长尺寸太赫兹光场,突破衍射极限对显微系统空间分辨率的限制,同时不损失光场能量和光谱信息,实现高通量、超宽谱的远场太赫兹高分辨成像。本文首先介绍基于纳米喷射的微球透镜显微技术,接着介绍基于太喷射的太赫兹显微技术,最后对基于喷射效应的太赫兹高分辨成像技术的前景做了展望。  相似文献   

14.
新一代磁光材料及器件研究进展   总被引:1,自引:0,他引:1  
磁光材料是典型的多功能材料,其应用频率覆盖了射频、微波、毫米波、THz波和光波段,是一类优秀的全波段材料.首先对磁光材料发展的动态进行了分析;其次就磁光材料应用于磁光盘、光纤通信器件、THz器件等进行了讨论;最后,对作者课题组的一些新的研究工作做了介绍,以期能对这一领域的发展起到促进作用.  相似文献   

15.
太赫兹频谱分析仪应用技术中,Chirp变换频谱分析应用了声表面波滤波器件,能够保障中频、分辨率等参数,满足深空探测领域对稳定性和功耗的严格要求。但目前国内的Chirp变换频谱分析仪只能处理400 MHz带宽的输入信号,不能完全满足应用需要。为了提高带宽,本文围绕1 GHz带宽声表面波滤波器件,利用直接数字频率合成技术产生与其匹配的2 GHz带宽的线性调频信号,设计了带宽为1 GHz,中心频率为3. 2 GHz的频谱分析仪,并对数字部分进行了实现和结果分析验证。  相似文献   

16.
作为太赫兹技术中的重要组成部分,太赫兹脉冲焦平面成像一经问世就引起了行业内的广泛关注,人们引入了各种方法去提升此成像技术的测量性能,同时也尝试将此成像技术应用于不同的工业和基础研究领域。本文综述了近年来人们对太赫兹脉冲焦平面成像的技术改良和应用研究,包括提升成像系统的空间分辨率、信噪比、信息获取能力,以及将此成像技术应用于光谱识别检测、超表面器件功能验证、太赫兹特殊光束测量、太赫兹表面波观测等,希望该综述能够推动太赫兹脉冲焦平面成像的进一步技术革新和应用拓展。  相似文献   

17.
We report, and review in detail, experiments resulting in a record 3.7% optical-to-terahertz (THz) conversion efficiency by optical rectification (OR) in cryogenically cooled congruent lithium niobate (cLN) using a near-optimal 680 fs pump pulse at 1030 nm. In addition, we report a record conversion efficiency of 1.7% at room temperature using stoichiometric lithium niobate (sLN) which results in 21.8 μJ of THz energy from a 1.2 mJ optical pulse. Electro-optical sampling measurements reveal the THz pulses to be single-cycle and centered at 0.45?THz. The experimentally measured efficiency, THz waveform, and THz spectrum are in good agreement with theoretical calculations. Finally, spatial beam profile measurements are also provided. To our knowledge, these results represent an order of magnitude improvement in efficiency of THz generation by OR in lithium niobate over previous results.  相似文献   

18.
The 5G network has been intensively investigated to realize the ongoing early deployment stage as an effort to match the exponential growth of the number of connected users and their increasing demands for high throughput, bandwidth with Quality of Service (QoS), and low latency. Given that most of the spectrums below 6 GHz are nearly used up, it is not feasible to employ the traditional spectrum, which is currently in use. Therefore, a promising and highly feasible effort to satisfy this insufficient frequency spectrum is to acquire new frequency bands for next-generation mobile communications. Toward this end, the primary effort has been focused on utilizing the millimeter-wave (mmWave) as the most promising candidate for the frequency spectrum. However, though the mmWave frequency band can fulfill the desired bandwidth requirements, it has been demonstrated to endure several issues like scattering, atmospheric absorption, fading, and especially penetration losses compared to the existing sub-6 GHz frequency band. Then, it is fundamental to optimize the mmWave band propagation channel to facilitate the practical 5G implementation for the network operators. Therefore, this study intends to investigate the outdoor channel characteristics of 26, 28, 36, and 38 GHz frequency bands for the communication infrastructure at the building to the ground floor in both Line of Sight (LOS) and Non-Line of Sight (NLOS) environments. The experimental campaign has studied the propagation path loss models such as Floating-Intercept (FI) and Close-In (CI) for the building to ground floor environment in LOS and NLOS scenarios. The findings obtained from the field experiments clearly show that the CI propagation model delivers much better performance in comparison with the FI model, thanks to its simple setup, accuracy, and precise function.  相似文献   

19.
In this two part paper, we provide a survey of recent and emerging topics in wireless networking. We view the area of wireless networking as dealing with problems of resource allocation so that the various connections that utilise the network achieve their desired performance objectives. In the first part of the paper, we first survey the area by providing a taxonomy of wireless networks as they have been deployed. Then, we provide a quick tutorial on the main issues in the wireless ‘physical’ layer, which is concerned with transporting bits over the radio frequency spectrum. Then, we proceed to discuss some resource allocation formulations in CDMA(code division multiple access) cellular networks and OFDMA(orthogonal frequency division multiple access) networks. In the second part of the paper, we first analyse random access wireless networks and pay special attention to 802·11 (Wi-Fi) networks.We then survey some topics in ad hoc multihop wireless networks, where we discuss arbitrary networks, as well as some theory of dense random networks. Finally, we provide an overview of the technical issues in the emerging area of wireless sensor networks.  相似文献   

20.
Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron‐accepting benzothiazolium, which exhibit higher electron‐withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2‐(4‐hydroxy‐3‐methoxystyryl)‐3‐methylbenzo[d]thiazol‐3‐ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second‐order nonlinearity. HMB‐based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580–1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号