首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
COVID-19 turned out to be an infectious and life-threatening viral disease, and its swift and overwhelming spread has become one of the greatest challenges for the world. As yet, no satisfactory vaccine or medication has been developed that could guarantee its mitigation, though several efforts and trials are underway. Countries around the globe are striving to overcome the COVID-19 spread and while they are finding out ways for early detection and timely treatment. In this regard, healthcare experts, researchers and scientists have delved into the investigation of existing as well as new technologies. The situation demands development of a clinical decision support system to equip the medical staff ways to timely detect this disease. The state-of-the-art research in Artificial intelligence (AI), Machine learning (ML) and cloud computing have encouraged healthcare experts to find effective detection schemes. This study aims to provide a comprehensive review of the role of AI & ML in investigating prediction techniques for the COVID-19. A mathematical model has been formulated to analyze and detect its potential threat. The proposed model is a cloud-based smart detection algorithm using support vector machine (CSDC-SVM) with cross-fold validation testing. The experimental results have achieved an accuracy of 98.4% with 15-fold cross-validation strategy. The comparison with similar state-of-the-art methods reveals that the proposed CSDC-SVM model possesses better accuracy and efficiency.  相似文献   

2.
COVID-19 is a pandemic that has affected nearly every country in the world. At present, sustainable development in the area of public health is considered vital to securing a promising and prosperous future for humans. However, widespread diseases, such as COVID-19, create numerous challenges to this goal, and some of those challenges are not yet defined. In this study, a Shallow Single-Layer Perceptron Neural Network (SSLPNN) and Gaussian Process Regression (GPR) model were used for the classification and prediction of confirmed COVID-19 cases in five geographically distributed regions of Asia with diverse settings and environmental conditions: namely, China, South Korea, Japan, Saudi Arabia, and Pakistan. Significant environmental and non-environmental features were taken as the input dataset, and confirmed COVID-19 cases were taken as the output dataset. A correlation analysis was done to identify patterns in the cases related to fluctuations in the associated variables. The results of this study established that the population and air quality index of a region had a statistically significant influence on the cases. However, age and the human development index had a negative influence on the cases. The proposed SSLPNN-based classification model performed well when predicting the classes of confirmed cases. During training, the binary classification model was highly accurate, with a Root Mean Square Error (RMSE) of 0.91. Likewise, the results of the regression analysis using the GPR technique with Matern 5/2 were highly accurate (RMSE = 0.95239) when predicting the number of confirmed COVID-19 cases in an area. However, dynamic management has occupied a core place in studies on the sustainable development of public health but dynamic management depends on proactive strategies based on statistically verified approaches, like Artificial Intelligence (AI). In this study, an SSLPNN model has been trained to fit public health associated data into an appropriate class, allowing GPR to predict the number of confirmed COVID-19 cases in an area based on the given values of selected parameters. Therefore, this tool can help authorities in different ecological settings effectively manage COVID-19.  相似文献   

3.
Ever since its outbreak in the Wuhan city of China, COVID-19 pandemic has engulfed more than 211 countries in the world, leaving a trail of unprecedented fatalities. Even more debilitating than the infection itself, were the restrictions like lockdowns and quarantine measures taken to contain the spread of Coronavirus. Such enforced alienation affected both the mental and social condition of people significantly. Social interactions and congregations are not only integral part of work life but also form the basis of human evolvement. However, COVID-19 brought all such communication to a grinding halt. Digital interactions have failed to enthuse the fervor that one enjoys in face-to-face meets. The pandemic has shoved the entire planet into an unstable state. The main focus and aim of the proposed study is to assess the impact of the pandemic on different aspects of the society in Saudi Arabia. To achieve this objective, the study analyzes two perspectives: the early approach, and the late approach of COVID-19 and the consequent effects on different aspects of the society. We used a Machine Learning based framework for the prediction of the impact of COVID-19 on the key aspects of society. Findings of this research study indicate that financial resources were the worst affected. Several countries are facing economic upheavals due to the pandemic and COVID-19 has had a considerable impact on the lives as well as the livelihoods of people. Yet the damage is not irretrievable and the world’s societies can emerge out of this setback through concerted efforts in all facets of life.  相似文献   

4.
Lightweight deep convolutional neural networks (CNNs) present a good solution to achieve fast and accurate image-guided diagnostic procedures of COVID-19 patients. Recently, advantages of portable Ultrasound (US) imaging such as simplicity and safe procedures have attracted many radiologists for scanning suspected COVID-19 cases. In this paper, a new framework of lightweight deep learning classifiers, namely COVID-LWNet is proposed to identify COVID-19 and pneumonia abnormalities in US images. Compared to traditional deep learning models, lightweight CNNs showed significant performance of real-time vision applications by using mobile devices with limited hardware resources. Four main lightweight deep learning models, namely MobileNets, ShuffleNets, MENet and MnasNet have been proposed to identify the health status of lungs using US images. Public image dataset (POCUS) was used to validate our proposed COVID-LWNet framework successfully. Three classes of infectious COVID-19, bacterial pneumonia, and the healthy lung were investigated in this study. The results showed that the performance of our proposed MnasNet classifier achieved the best accuracy score and shortest training time of 99.0% and 647.0 s, respectively. This paper demonstrates the feasibility of using our proposed COVID-LWNet framework as a new mobile-based radiological tool for clinical diagnosis of COVID-19 and other lung diseases.  相似文献   

5.
The COVID-19 virus exhibits pneumonia-like symptoms, including fever, cough, and shortness of breath, and may be fatal. Many COVID-19 contraction experiments require comprehensive clinical procedures at medical facilities. Clinical studies help to make a correct diagnosis of COVID-19, where the disease has already spread to the organs in most cases. Prompt and early diagnosis is indispensable for providing patients with the possibility of early clinical diagnosis and slowing down the disease spread. Therefore, clinical investigations in patients with COVID-19 have revealed distinct patterns of breathing relative to other diseases such as flu and cold, which are worth investigating. Current supervised Machine Learning (ML) based techniques mostly investigate clinical reports such as X-Rays and Computerized Tomography (CT) for disease detection. This strategy relies on a larger clinical dataset and does not focus on early symptom identification. Towards this end, an innovative hybrid unsupervised ML technique is introduced to uncover the probability of COVID-19 occurrence based on the breathing patterns and commonly reported symptoms, fever, and cough. Specifically, various metrics, including body temperature, breathing and cough patterns, and physical activity, were considered in this study. Finally, a lightweight ML algorithm based on the K-Means and Isolation Forest technique was implemented on relatively small data including 40 individuals. The proposed technique shows an outlier detection with an accuracy of 89%, on average.  相似文献   

6.
Social networking services (SNSs) provide massive data that can be a very influential source of information during pandemic outbreaks. This study shows that social media analysis can be used as a crisis detector (e.g., understanding the sentiment of social media users regarding various pandemic outbreaks). The novel Coronavirus Disease-19 (COVID-19), commonly known as coronavirus, has affected everyone worldwide in 2020. Streaming Twitter data have revealed the status of the COVID-19 outbreak in the most affected regions. This study focuses on identifying COVID-19 patients using tweets without requiring medical records to find the COVID-19 pandemic in Twitter messages (tweets). For this purpose, we propose herein an intelligent model using traditional machine learning-based approaches, such as support vector machine (SVM), logistic regression (LR), naïve Bayes (NB), random forest (RF), and decision tree (DT) with the help of the term frequency inverse document frequency (TF-IDF) to detect the COVID-19 pandemic in Twitter messages. The proposed intelligent traditional machine learning-based model classifies Twitter messages into four categories, namely, confirmed deaths, recovered, and suspected. For the experimental analysis, the tweet data on the COVID-19 pandemic are analyzed to evaluate the results of traditional machine learning approaches. A benchmark dataset for COVID-19 on Twitter messages is developed and can be used for future research studies. The experiments show that the results of the proposed approach are promising in detecting the COVID-19 pandemic in Twitter messages with overall accuracy, precision, recall, and F1 score between 70% and 80% and the confusion matrix for machine learning approaches (i.e., SVM, NB, LR, RF, and DT) with the TF-IDF feature extraction technique.  相似文献   

7.
This article aims to assess health habits, safety behaviors, and anxiety factors in the community during the novel coronavirus disease (COVID-19) pandemic in Saudi Arabia based on primary data collected through a questionnaire with 320 respondents. In other words, this paper aims to provide empirical insights into the correlation and the correspondence between socio-demographic factors (gender, nationality, age, citizenship factors, income, and education), and psycho-behavioral effects on individuals in response to the emergence of this new pandemic. To focus on the interaction between these variables and their effects, we suggest different methods of analysis, comprising regression trees and support vector machine regression (SVMR) algorithms. According to the regression tree results, the age variable plays a predominant role in health habits, safety behaviors, and anxiety. The health habit index, which focuses on the extent of behavioral change toward the commitment to use the health and protection methods, is highly affected by gender and age factors. The average monthly income is also a relevant factor but has contrasting effects during the COVID-19 pandemic period. The results of the SVMR model reveal a strong positive effect of income, with R2 values of 99.59%, 99.93% and 99.88% corresponding to health habits, safety behaviors, and anxiety.  相似文献   

8.
9.
The outbreak of the pandemic, caused by Coronavirus Disease 2019 (COVID-19), has affected the daily activities of people across the globe. During COVID-19 outbreak and the successive lockdowns, Twitter was heavily used and the number of tweets regarding COVID-19 increased tremendously. Several studies used Sentiment Analysis (SA) to analyze the emotions expressed through tweets upon COVID-19. Therefore, in current study, a new Artificial Bee Colony (ABC) with Machine Learning-driven SA (ABCML-SA) model is developed for conducting Sentiment Analysis of COVID-19 Twitter data. The prime focus of the presented ABCML-SA model is to recognize the sentiments expressed in tweets made upon COVID-19. It involves data pre-processing at the initial stage followed by n-gram based feature extraction to derive the feature vectors. For identification and classification of the sentiments, the Support Vector Machine (SVM) model is exploited. At last, the ABC algorithm is applied to fine tune the parameters involved in SVM. To demonstrate the improved performance of the proposed ABCML-SA model, a sequence of simulations was conducted. The comparative assessment results confirmed the effectual performance of the proposed ABCML-SA model over other approaches.  相似文献   

10.
11.
In vehicular systems, driving is considered to be the most complex task, involving many aspects of external sensory skills as well as cognitive intelligence. External skills include the estimation of distance and speed, time perception, visual and auditory perception, attention, the capability to drive safely and action-reaction time. Cognitive intelligence works as an internal mechanism that manages and holds the overall driver’s intelligent system.These cognitive capacities constitute the frontiers for generating adaptive behaviour for dynamic environments. The parameters for understanding intelligent behaviour are knowledge, reasoning, decision making, habit and cognitive skill. Modelling intelligent behaviour reveals that many of these parameters operate simultaneously to enable drivers to react to current situations. Environmental changes prompt the parameter values to change, a process which continues unless and until all processes are completed. This paper model intelligent behaviour by using a ‘driver behaviour model’ to obtain accurate intelligent driving behaviour patterns. This model works on layering patterns in which hierarchy and coherence are maintained to transfer the data with accuracy from one module to another. These patterns constitute the outcome of different modules that collaborate to generate appropriate values. In this case, accurate patterns were acquired using ANN static and dynamic non-linear autoregressive approach was used and for further accuracy validation, time-series dynamic backpropagation artificial neural network, multilayer perceptron and random sub-space on real-world data were also applied.  相似文献   

12.
An epidemic is a quick and widespread disease that threatens many lives and damages the economy. The epidemic lifetime should be accurate so that timely and remedial steps are determined. These include the closing of borders schools, suspension of community and commuting services. The forecast of an outbreak effectively is a very necessary but difficult task. A predictive model that provides the best possible forecast is a great challenge for machine learning with only a few samples of training available. This work proposes and examines a prediction model based on a deep extreme learning machine (DELM). This methodology is used to carry out an experiment based on the recent Wuhan coronavirus outbreak. An optimized prediction model that has been developed, namely DELM, is demonstrated to be able to make a prediction that is fairly best. The results show that the new methodology is useful in developing an appropriate forecast when the samples are far from abundant during the critical period of the disease.During the investigation, it is shown that the proposed approach has the highest accuracy rate of 97.59% with 70% of training, 30% of test and validation. Simulation results validate the prediction effectiveness of the proposed scheme.  相似文献   

13.
This study proposes an architecture for the prediction of extremist human behaviour from projected suicide bombings. By linking ‘dots’ of police data comprising scattered information of people, groups, logistics, locations, communication, and spatiotemporal characters on different social media groups, the proposed architecture will spawn beneficial information. This useful information will, in turn, help the police both in predicting potential terrorist events and in investigating previous events. Furthermore, this architecture will aid in the identification of criminals and their associates and handlers. Terrorism is psychological warfare, which, in the broadest sense, can be defined as the utilisation of deliberate violence for economic, political or religious purposes. In this study, a supervised learning-based approach was adopted to develop the proposed architecture. The dataset was prepared from the suicide bomb blast data of Pakistan obtained from the South Asia Terrorism Portal (SATP). As the proposed architecture was simulated, the supervised learning-based classifiers naïve Bayes and Hoeffding Tree reached 72.17% accuracy. One of the additional benefits this study offers is the ability to predict the target audience of potential suicide bomb blasts, which may be used to eliminate future threats or, at least, minimise the number of casualties and other property losses.  相似文献   

14.
15.
Diabetic retinopathy (DR) is a retinal disease that causes irreversible blindness. DR occurs due to the high blood sugar level of the patient, and it is clumsy to be detected at an early stage as no early symptoms appear at the initial level. To prevent blindness, early detection and regular treatment are needed. Automated detection based on machine intelligence may assist the ophthalmologist in examining the patients’ condition more accurately and efficiently. The purpose of this study is to produce an automated screening system for recognition and grading of diabetic retinopathy using machine learning through deep transfer and representational learning. The artificial intelligence technique used is transfer learning on the deep neural network, Inception-v4. Two configuration variants of transfer learning are applied on Inception-v4: Fine-tune mode and fixed feature extractor mode. Both configuration modes have achieved decent accuracy values, but the fine-tuning method outperforms the fixed feature extractor configuration mode. Fine-tune configuration mode has gained 96.6% accuracy in early detection of DR and 97.7% accuracy in grading the disease and has outperformed the state of the art methods in the relevant literature.  相似文献   

16.
The purpose of this research is the segmentation of lungs computed tomography (CT) scan for the diagnosis of COVID-19 by using machine learning methods. Our dataset contains data from patients who are prone to the epidemic. It contains three types of lungs CT images (Normal, Pneumonia, and COVID-19) collected from two different sources; the first one is the Radiology Department of Nishtar Hospital Multan and Civil Hospital Bahawalpur, Pakistan, and the second one is a publicly free available medical imaging database known as Radiopaedia. For the preprocessing, a novel fuzzy c-mean automated region-growing segmentation approach is deployed to take an automated region of interest (ROIs) and acquire 52 hybrid statistical features for each ROIs. Also, 12 optimized statistical features are selected via the chi-square feature reduction technique. For the classification, five machine learning classifiers named as deep learning J4, multilayer perceptron, support vector machine, random forest, and naive Bayes are deployed to optimize the hybrid statistical features dataset. It is observed that the deep learning J4 has promising results (sensitivity and specificity: 0.987; accuracy: 98.67%) among all the deployed classifiers. As a complementary study, a statistical work is devoted to the use of a new statistical model to fit the main datasets of COVID-19 collected in Pakistan.  相似文献   

17.
From late 2019 to the present day, the coronavirus outbreak tragically affected the whole world and killed tens of thousands of people. Many countries have taken very stringent measures to alleviate the effects of the coronavirus disease 2019 (COVID-19) and are still being implemented. In this study, various machine learning techniques are implemented to predict possible confirmed cases and mortality numbers for the future. According to these models, we have tried to shed light on the future in terms of possible measures to be taken or updating the current measures. Support Vector Machines (SVM), Holt-Winters, Prophet, and Long-Short Term Memory (LSTM) forecasting models are applied to the novel COVID-19 dataset. According to the results, the Prophet model gives the lowest Root Mean Squared Error (RMSE) score compared to the other three models. Besides, according to this model, a projection for the future COVID-19 predictions of Turkey has been drawn and aimed to shape the current measures against the coronavirus.  相似文献   

18.
With the increasing and rapid growth rate of COVID-19 cases, the healthcare scheme of several developed countries have reached the point of collapse. An important and critical steps in fighting against COVID-19 is powerful screening of diseased patients, in such a way that positive patient can be treated and isolated. A chest radiology image-based diagnosis scheme might have several benefits over traditional approach. The accomplishment of artificial intelligence (AI) based techniques in automated diagnoses in the healthcare sector and rapid increase in COVID-19 cases have demanded the requirement of AI based automated diagnosis and recognition systems. This study develops an Intelligent Firefly Algorithm Deep Transfer Learning Based COVID-19 Monitoring System (IFFA-DTLMS). The proposed IFFA-DTLMS model majorly aims at identifying and categorizing the occurrence of COVID19 on chest radiographs. To attain this, the presented IFFA-DTLMS model primarily applies densely connected networks (DenseNet121) model to generate a collection of feature vectors. In addition, the firefly algorithm (FFA) is applied for the hyper parameter optimization of DenseNet121 model. Moreover, autoencoder-long short term memory (AE-LSTM) model is exploited for the classification and identification of COVID19. For ensuring the enhanced performance of the IFFA-DTLMS model, a wide-ranging experiments were performed and the results are reviewed under distinctive aspects. The experimental value reports the betterment of IFFA-DTLMS model over recent approaches.  相似文献   

19.
Robotics and automation provide potentially paradigm shifting improvements in the way materials are synthesized and characterized, generating large, complex data sets that are ideal for modeling and analysis by modern machine learning (ML) methods. Nanomaterials have not yet fully captured the benefits of automation, so lag behind in the application of ML methods of data analysis. Here, some key developments in, and roadblocks to the application of ML methods are reviewed to model and predict potentially adverse biological and environmental effects of nanomaterials. This work focuses on the diverse ways a range of ML algorithms are applied to understand and predict nanomaterials properties, provides examples of the application of traditional ML and deep learning methods to nanosafety, and provides context and future perspectives on developments that are likely to occur, or need to occur in the near future that allow artificial intelligence to make a deeper contribution to nanosafety.  相似文献   

20.
Coronavirus disease (COVID-19) is an extremely infectious disease and possibly causes acute respiratory distress or in severe cases may lead to death. There has already been some research in dealing with coronavirus using machine learning algorithms, but few have presented a truly comprehensive view. In this research, we show how convolutional neural network (CNN) can be useful to detect COVID-19 using chest X-ray images. We leverage the CNN-based pre-trained models as feature extractors to substantiate transfer learning and add our own classifier in detecting COVID-19. In this regard, we evaluate performance of five different pre-trained models with fine-tuning the weights from some of the top layers. We also develop an ensemble model where the predictions from all chosen pre-trained models are combined to generate a single output. The models are evaluated through 5-fold cross validation using two publicly available data repositories containing healthy and infected (both COVID-19 and other pneumonia) chest X-ray images. We also leverage two different visualization techniques to observe how efficiently the models extract important features related to the detection of COVID- 19 patients. The models show high degree of accuracy, precision, and sensitivity. We believe that the models will aid medical professionals with improved and faster patient screening and pave a way to further COVID-19 research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号