首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
马毅  沈文喆  袁梅梅  王韵珂  姚耀春 《化工进展》2019,38(11):5015-5023
以磷铁废渣为原料提供磷源和铁源,用硝酸和硫酸混合溶液浸出磷铁渣中的铁和磷元素,并通过沉淀法制备电池级纳米磷酸铁。探究了硝酸浓度、反应时间、反应温度对磷铁渣溶解率的影响,并研究了反应过程中铁磷比、温度和pH对制备的磷酸铁性能影响。利用X衍射分析仪、扫描电子显微镜、热重分析仪、红外光谱仪和电感耦合等离子体发射光谱仪等分析手段对磷酸铁的形貌、晶体结构与化学成分进行了表征。实验结果表明,磷铁渣浸出最佳的实验条件为:硝酸浓度1.5mol/L,反应时间4h,反应温度90℃,此条件下磷铁的溶解率为95.11%;磷酸铁制备过程中的最佳实验条件为:铁磷比1∶1,反应温度60℃,反应pH=1.0,所制备的FePO4结晶度高,颗粒形貌规整,分散均匀,一次颗粒粒径为100~200nm,铁磷摩尔比为0.97,杂质元素含量符合电池级磷酸铁的要求。  相似文献   

2.
磷酸铁(FePO4)是锂电池正极材料磷酸铁锂(LiFePO4)的核心前驱体,FePO4形貌及硫含量对合成的LiFePO4材料性能有重要影响。为得到类球形低硫FePO4产品,在传统液相沉淀法技术基础上做了改进优化,添加十六烷基三甲基溴化铵(CTAB)作为形貌助剂提高产品球形度,添加氨水作为配体形成磷酸铁铵配合物改善结晶过程,降低产品硫含量。结果表明:所制备的FePO4产品硫质量分数低,达到2.6×10 -5,形貌为均一的微米类球形颗粒,D50=11.4 μm,振实密度达到1.22 g/cm 3,有望成为制备高压实密度LiFePO4材料的核心前驱体。  相似文献   

3.
李珍珍 《山西化工》2023,(7):1-2+10
以黄磷所得副产品磷铁为原料,通过湿法溶解、除杂、结晶等工艺制备电池级磷酸铁,然后利用制备出的磷酸铁制备磷酸铁锂。制备电池级磷酸铁的最佳工艺参数为:硝酸浓度为3.0 mol/L、最佳反应温度为110℃、最佳反应时间为120 min、反应体系铁质量浓度为18.0 g/L,此时样品中铁含量与铁磷比接近理论值。LiFePO4/C样品首次充电容量、放电容量、放电的库伦效率分别为158.8 mAh/g、147.8 Ah/g、93.1%,说明磷酸铁锂电化学性能较好,能用于锂电池的正极材料。  相似文献   

4.
吴康  李军  陈明 《无机盐工业》2020,52(6):41-45
提出了一种在温和条件下制备高振实密度球形磷酸铁的简单方法。制备过程中无需引入碱性物质调节pH和添加其他模板剂,仅以九水合硝酸铁[Fe(NO3)·9H2O]和磷酸(H3PO4)为原料,在乙醇-水体系中即可制备3D纳/微米球形磷酸铁(记为FPE)。采用扫描电镜(SEM)、激光粒度仪、X射线衍射仪(XRD)、热重-差式扫描量热仪(TG-DSC)、比表面积测试仪(BET)等对制备的磷酸铁进行表征分析。结果显示,制备的磷酸铁具有3D纳/微米球形结构,平均一次粒径为27.2 nm,二次粒径D50为3.75 μm。FPE的组成为二水合磷酸铁(FePO4·2H2O),纯度较高,具有介孔结构,平均孔径为2.75 nm,比表面积为22.41 cm 2/g,同时具有较高的振实密度(1.34 g/cm 3)。3D纳/微米球形磷酸铁制备方法简单,性能优异,以其为前驱体制备的磷酸铁锂(LiFePO4/C)具有较高的振实密度(1.46 g/cm 3),在0.2C倍率下的放电比容量为157.9 mA·h/g。  相似文献   

5.
以硝酸铁和磷酸为原料,利用共沉淀法制备了电池级磷酸铁,研究了反应温度、反应物浓度、投料比和反应时间对磷酸铁产率和粒径的影响,并通过正交优化得到了最佳的工艺条件:硝酸铁浓度为1.1 mol/L、投料比(磷酸与硝酸铁物质的量比)为1.1、反应温度为90℃、反应时间为8 h。采用扫描电镜(SEM)、激光粒度仪、X射线衍射仪(XRD)、热重-差式扫描量热仪(TG-DTA)等对制备的磷酸铁进行表征分析。分析结果表明:在优化条件下得到的二水磷酸铁为单斜晶,纯度高,二次粒径D50为2.41μm,均符合电池级磷酸铁的要求。以磷酸铁为前驱体制备的LiFePO4/C性能良好,将其作为正极材料组成的电池在0.05C、0.1C、1C倍率下首次放电比容量分别为143.9、136.8、131.4 mA·h/g。  相似文献   

6.
为了解决黄磷副产物磷铁附加值低的问题,采用Design Expert软件设计和优化了黄磷副产物制备磷酸铁的实验,考察了温度、反应时间和酸浓度等因素对黄磷副产物制备磷酸铁的浸取率的影响。通过响应面分析法的预测与实际实验验证,当硝酸质量分数为30%、固液质量比为1∶8、反应温度为95℃、反应时间为6 h时,实验效果最佳,浸取率可达70.5%。为黄磷副产物制备磷酸铁方法的工业应用提供了新思路。  相似文献   

7.
采用等体积浸渍法制备了不同金属(La、Co、Ce、Cr)改性的M-Rh/FePO4催化剂,考察不同催化剂在1-辛烯氢甲酰化中的反应性能;利用XRD、H2-TPR、XPS等对催化剂进行表征。结果表明,不同改性剂对Rh/FePO4催化剂中金属Rh与载体FePO4改性效果不同,其中金属Cr的加入对Rh/FePO4催化性能的提高明显优于其他3种改性剂,同时,过多金属Cr的加入降低了催化性能。当金属Cr质量分数为0.1%时,可显著增强金属Rh与载体FePO4之间的相互作用,在1-辛烯氢甲酰化反应中表现出较好的催化性能,可获得99.4%的转化率和92.8%的醛收率。催化剂经5次循环反应后仍保持较好的活性和选择性,具有良好的循环稳定性。  相似文献   

8.
正丁醛自缩合合成辛烯醛是工业生产辛醇的重要步骤之一。首先考察了3种杂多酸H3PW12O40、H4SiW12O40和H3PMo12O40对正丁醛自缩合反应的催化性能,发现H4SiW12O40的催化性能最好。其次,利用浸渍法制备了负载型H4SiW12O40催化剂,考察了载体和制备条件对催化剂性能的影响,确定以SiO2为载体,H4SiW12O40负载量为50%(质量分数),在150℃焙烧2 h的制备条件。探讨了反应条件对催化剂性能的影响,确定了适宜反应条件:催化剂与正丁醛的质量比为0.15,反应温度120℃,反应时间6 h。在此条件下,正丁醛的转化率为90.4%,辛烯醛的选择性为89.2%。通过对催化剂进行ICP-AES分析和XRD表征,发现活性组分流失是造成催化剂稳定性差的主要原因。为减缓H4SiW12O40的流失,以[emim]BF4离子液体为模板剂,采用溶胶-凝胶法制备了H4SiW12O40/SiO2催化剂,实验结果表明,催化剂稳定性有一定程度的提高。  相似文献   

9.
以硫酸锰和硝酸镧为原料,采用共沉淀-浸渍法制备不同比例的SO2-4/MnO2/La3+。以催化合成乙酸苄酯为探针反应,考察H2SO4浓度、La(NO33的质量分数、焙烧温度、焙烧时间等因素对其催化活性的影响。结果表明,催化剂制备的最佳条件为:硝酸镧的加人为硫酸锰的3%(质量分数),浸渍浓度为1 mol·L-1的H2SO4,焙烧温度为450℃,焙烧时间3 h,酯化率到达最大,为89.7%。  相似文献   

10.
以硫酸法钛白粉生产过程中的副产硫酸亚铁为原料制备电池级磷酸铁,研究了硫酸亚铁的净化除杂、磷酸铁的合成反应过程中不同的实验条件对产品质量的影响。结果表明:硫化钠加入量占硫酸亚铁质量分数的4.0%、水解温度90℃、水解时间2 h、水解pH为4.0时除杂可得纯净的硫酸亚铁溶液;合成磷酸铁的最优工艺条件为反应温度85℃、磷铁摩尔投料比1.5︰1、表面活性剂CTAB用量1.5%、反应p H值1.8。在此最佳工艺条件下制备的磷酸铁纯度较高,满足电池级磷酸铁的技术指标,为钛白粉固废资源化利用提供了有效的途径。  相似文献   

11.
以钛白生产副产物七水硫酸亚铁为铁源,工业磷酸二氢铵为磷源,双氧水为氧化剂,采用共沉淀法合成了不同粒径和形貌的二水磷酸铁,并以此为前驱体,通过碳热还原法制备了粒径不同的LiFePO4/C正极材料。经过对样品进行X射线衍射(XRD)、扫描电镜(SEM)以及恒电流充放电测试,研究了二水磷酸铁及LiFePO4/C的结构、形貌以及电化学性能。结果表明,以较细的二水磷酸铁为铁源,制备得到的LiFePO4/C颗粒较细,且具有更优异的电化学性能。0.1、0.5、1、2、5、10 C放电比容量分别为154、148、144、140、130、120 mA·h/g。  相似文献   

12.
The processing of molybdenum-uranium ore in a sulfuric acid solution using hydrogen peroxide as an oxidant has been investigated. The leaching temperature, hydrogen peroxide concentration, sulfuric acid concentration, leaching time, particle size, liquid-to-solid ratio and agitation speed all have significant effects on the process. The optimum process operating parameters were: temperature: 95°C; H2O2 concentration: 0.5 M; sulfuric acid concentration: 2.5 M; time: 2 h; particle size: 74 μm, liquid-to-solid ratio: 14 ∶ 1 and agitation speed: 600 rpm. Under these experimental conditions, the extraction efficiency of molybdenum was about 98.4%, and the uranium extraction efficiency was about 98.7%. The leaching kinetics of molybdenum showed that the reaction rate of the leaching process is controlled by the chemical reaction at the particle surface. The leaching process follows the kinetic model 1 ? (1?X)1/3 = kt with an apparent activation energy of 40.40 kJ/mole. The temperature, concentrations of H2O2 and H2SO4 and the mesh size are the main factors that influence the leaching rate. The reaction order in H2SO4 was 1.0012 and in H2O2 it was 1.2544.  相似文献   

13.
利用D72离子交换树脂作为载体与铁离子进行离子交换制备Fe-D72树脂催化剂,将其运用到苯酚羟基化反应中。通过单因素法研究催化剂的含铁量、反应温度、反应时间、催化剂用量、苯酚(PH)/过氧化氢(H2O2)物质的量之比对苯酚羟基化反应的影响;采用L9(34)正交表设计正交试验,结果表明:n(PH)/n(H2O2)和反应温度对苯二酚收率的影响最大;在考察的正交范围内,n(PH)/n(H2O2)=1,反应温度为70 ℃,反应时间为1 h,催化剂量为0.1 g时催化效果最好,此时苯酚转化率为42.4%,苯二酚选择性为94.1%,苯二酚收率为39.8%。Fe-D72催化剂连续重复利用4次,催化稳定性较好。  相似文献   

14.
利用软锰矿吸收硫酸镁热解尾气二氧化硫制得硫酸锰,再与碳酸氢铵室温下固相球磨反应,制备出前躯体碳酸锰,经热分解获得四氧化三锰。分别考察了物料比、球磨时间、球料比等因素对硫酸锰转化率的影响,采用XRD对产物进行了分析。结果表明,在n(碳酸氢铵)∶n(硫酸锰)=3.5∶1、球磨时间为40 min、球料质量比为5∶1时,硫酸锰的转化率可达99.8%,将固相产物在1 000 ℃热解1 h后所制备的四氧化三锰纯度为99.9%。该工艺操作简单,产品纯度高,成本低,为硫酸锰制备四氧化三锰提供了新的途径。  相似文献   

15.
在浸没式循环撞击流反应器中,以氨水为沉淀剂,用七水合硫酸亚铁和六水合三氯化铁为原料,采用共沉淀法制备了纳米四氧化三铁粒子。考察了搅拌转速、亚铁与三价铁物质的量比、反应温度和溶液pH对所得纳米四氧化三铁的分散性和粒径的影响。采用傅里叶红外光谱仪、透射电镜、X射线衍射仪等对制得的纳米粒子的结构和性能进行了表征。结果表明:用撞击流反应器制备纳米四氧化三铁粒子的最佳工艺条件:亚铁与三价铁物质的量比为1 ∶1,反应温度为40 ℃,搅拌转速为1 600 r/min,以氨水作沉淀剂,最佳pH控制在11.0左右。在上述条件下,可以制备出分散性好、纯度高、平均粒径为10 nm的四氧化三铁粒子。  相似文献   

16.
采用等体积浸渍法制备FeZSM-5作为异相类Fenton氧化催化剂,使用XRD、FT-IR对FeZSM-5进行表征,探究反应温度、初始pH值、H_2O_2初始浓度、催化剂用量以及铁负载量对FeZSM-5催化H_2O_2氧化降解日落黄FCF脱色的影响,考察催化剂循环使用性能。结果表明,铁以Fe_2O_3形态存在于分子筛孔道内; FeZSM-5催化剂活性受反应温度影响较大,在最适宜条件下,铁负载质量分数为3.5%的FeZSM-5催化剂在FeZSM-5/H_2O_2类Fenton氧化反应体系中对日落黄FCF模拟废水脱色率达97.0%,且循环使用性能较好。  相似文献   

17.
针对钢铁厂含铁尘泥低附加值的问题,以氯化胆碱-二水合草酸(CC-OA)低共熔溶剂(DES)为研究体系,以钢厂含铁粉尘(经水洗处理)为研究对象,提出了运用氯化胆碱-二水合草酸低共熔溶剂处理含铁粉尘固相前驱体热分解法制备纳米氧化铁,并对处理过程中前驱体热分解及纳米氧化铁晶粒生长进行动力学分析。研究表明:处理过程中得到的前驱体为FeC2O4·2H2O,以其热分解第二阶段为热分析动力学的研究目标,根据Ozawa方程法、Kissinger-Akahira-Sunose方程法和Starink方程法3种等转化率法得到的平均反应活化能为220.54 kJ/mol。前驱体焙烧的最佳条件:焙烧温度为673 K、焙烧时间为1 h。根据唯象方程计算出纳米氧化铁的晶粒生长平均激活能为39.06 kJ/mol,并得到了焙烧温度、焙烧时间与粒径的关系,实现特定粒径纳米氧化铁的制备。最佳焙烧条件下得到的纳米氧化铁纯度达99.67%,扫描电镜下观察其颗粒呈现不规则的立方晶体结构,粒径主要分布在10~100 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号