共查询到18条相似文献,搜索用时 62 毫秒
1.
采用混合法用钢渣与活性炭制备混合钢渣活性炭吸附剂,对其进行XRF, BET, SEM和FT-IR等表征,于可编程电加热固定床反应器中进行模拟烧结烟气脱硫脱硝实验,考察反应温度、SO2浓度及[NH3]/[NO]浓度比、O2含量等因素对混合钢渣活性炭的吸附及催化性能的影响。结果表明,模拟烧结烟气中SO2初始浓度0.06vol%, NO初始浓度0.04vol%, O2含量15vol%及反应温度120℃条件下,最高脱硫脱硝率分别为79%和34%。按浓度比[NH3]/[NO]=1通入还原剂NH3时,脱硫脱硝率均升高,表明钢渣具有一定催化还原作用。脱硝率随反应温度升高而下降,O2含量提高有利于混合钢渣活性炭对SO2和NO的吸附。掺混钢渣降低了吸附剂的比表面积,但钢渣中含一定量Fe2O3,具有一定催化还原作用,有利于NO吸附。同时,加入钢渣也是对固废资源的合理利用,达到“以废制污”的目的。 相似文献
2.
3.
活性炭有很强的吸附能力和催化能力,在烟气脱硫脱硝领域有很好的发展前景。近年来对活性炭改性方法研究很多,主要有物理改性法和化学改性法,物理改性法以微波辐射法为代表,化学改性法又分为氧化改性法、还原改性法和负载法。影响改性活性炭吸附性能的因素主要有自身因素和环境因素,材质、工艺的不同会造成比表面积、孔隙率、孔径分布的不同而直接影响改性的成败,烟气中的二氧化硫、氧气、水蒸气以及脱硝温度也会影响改性活性炭的吸附能力。 相似文献
4.
5.
6.
随着烟气脱硝系统在火电厂的应用,对选择性催化还原催化剂的中毒机理和再生工艺的研究受到广泛关注。本文系统综述了脱硝催化剂的物理及化学中毒机制、再生方法及工艺。在中毒机制方面,将不同中毒机制归为三类:颗粒物或生成盐沉积在催化剂表面,堵塞催化剂通道和孔道;毒物与活性中心作用使表面的酸性性能和氧化还原性能降低;催化剂结构破坏和发生不可逆相变。在催化剂的再生方面,本文详细介绍了失活催化剂的再生工艺流程和再生液的选择,比较了不同再生技术的针对性和优缺点,最后介绍了电厂高钙项目的再生工业示范,其再生催化剂的相对活性恢复到原来的0.96,SO2氧化率为1.0%,且各项指标达到了新鲜催化剂的水平。本文对延长催化剂使用寿命和制定废弃催化剂再生工艺具有重要指导意义。 相似文献
7.
随着乙烯裂解炉的快速发展及其产能总量的不断提升,乙烯裂解炉烟气中氮氧化物(NOx)的排放问题逐步受到人们的关注。总结分析了国内外主要的NO_x去除技术原理及特点,其中应用最广泛和有敁的尾部烟气脱硝技术是NH_3-SCR(选择性催化还原)技术。分析了乙烯裂解炉烟气SCR脱硝技术的要求,最适宜的选择是裂解炉尾部烟气低温脱硝,低温活性和抗水性是乙烯裂解炉脱硝催化剂的重要研究方向。 相似文献
8.
9.
微波等离子体直接分解NO有极高的效率,但在有氧条件下分解较难。为解决这一问题,本文提出了一种利用微波诱导活性炭激发等离子体射流在有氧条件下脱硝的新技术。利用微波材料学工作站,通过调整激发等离子体参数(活性炭直径、活性炭质量、微波功率)得到了最佳工艺条件,深入分析了等离子体射流形成过程,并将其用于脱硝实验,研究了不同形态等离子体、NO初始浓度和O2浓度因素对脱硝的影响。结果表明,以1L/min氮气作载气时,在活性炭直径2mm、质量15g、微波功率2kW条件下,可快速产生等离子体射流且持续时间长久。等离子体用于脱硝实验,射流状等离子体脱硝效率高于闪电状等离子体。NO依次在活性炭床层区和等离子体射流区去除。当O2体积分数小于4%时,O2浓度的增加对NO的脱除有促进作用;大于4%时,O2浓度的增加会产生过量的氧自由基(·O)和大量的CO2,对NO的脱除产生抑制作用。 相似文献
10.
随着我国对环境保护的日益重视,尤其是对燃煤发电厂氮氧化物的排放要求更加严格,为此需要安装烟气脱硝系统以降低氮氧化物排放,目前我国燃煤发电厂烟气脱硝系统大多选用选择性催化还原(SCR)烟气脱硝工艺,文章主要探讨了目前燃煤发电厂SCR烟气脱硝工作中存在的问题,为今后燃煤发电厂SCR烟气脱硝的研究提供了一些建议。 相似文献
11.
太钢烧结烟气活性炭脱硫技术介绍 总被引:1,自引:0,他引:1
介绍太钢应用的活性炭烧结烟气脱硫技术。详述活性炭性能要求、脱硫原理、工艺流程和主要设备,以及一些技术上的创新。3年多的运行表明,装置运行稳定,脱硫率高达95%以上,每年生产w(H2SO4)为98%硫酸22 300 t,用于公司内生产硫酸铵或酸洗。 相似文献
12.
介绍了大型燃煤电站SCR脱硝催化剂的国内外发展情况、国家环保政策需求、市场销售预测和发展前景及面临的问题,概述了国内SCR脱硝技术立项研究的必要性。 相似文献
13.
改性活性炭的烟气脱硫脱硝性能研究 总被引:1,自引:0,他引:1
采用浸渍法改性活性炭,低温吸附模拟烧结机烟气中的SO2和NO,研究了质量分数3%的HNO3改性活性炭表面官能团的变化及其吸附烟气中SO2和NO的性能。Boehm滴定结果表明:浸渍时间6 h,干燥温度130℃,干燥时间2 h得到的活性炭碱性基团增加最多,与傅里叶变换红外光谱分析结果相符。改性后的最佳活性炭,前60 s的脱硫率维持在90%以上,脱硝率在前20 s也达90%以上,再生后改性活性炭脱硫脱硝能力基本不变。 相似文献
14.
在模拟燃煤烟气流动反应试验台上,对喷射吸附脱汞过程中影响活性炭喷射量的汞浓度、停留时间、温度、除尘设备等因素进行了试验研究.结果表明获得相同脱汞效率,在较低烟气汞浓度下活性炭的喷射量较大.停留时间对活性炭喷射量的影响最大,在较长停留时间下活性炭能够进行充分的吸附,相应的活性炭喷射量较少;在较短停留时间下受动力学限制,过多的活性炭喷射量不会引起脱汞效率相应增加.随着温度升高,活性炭的喷射量也随之增加;通过化学改性能提高活性炭在较高烟气温度下的吸附能力,从而减少喷射量.布袋除尘设备的使用能在较大程度上降低活性炭的喷射量. 相似文献
15.
The effect of K addition on Au/Activated carbon (AC) catalyst for CO selective oxidation in hydrogen-rich gas was investigated
in this paper. It was found that K addition resulted in activity promotion for selective CO oxidation. The results of XRD
and XPS characterization indicated that K addition produced the highly dispersed Au species and retarded the sintering of
Au species on the catalyst surface during the reaction. 相似文献
16.
通过硝酸活化和高温水热活化方法对活性炭进行表面改性,之后在改性活性炭上负载不同含量的磷钨酸考察催化剂在有水蒸汽条件下的催化氧化脱硝催化活性,初始反应条件为:温度80 ℃,空速800 h-1,O2体积分数为5%、H2O体积分数为4.2%、NO含量为443 mg·m-3。通过FT-IR表征制备的催化剂评价前后表面有机活性基团的变化,将不同磷钨酸负载量下活性炭催化剂的脱硝活性评价结果和红外光谱结合,结果表明,湿气条件下,磷钨酸负载质量分数为10%时制备的催化剂能够较好地保持催化氧化脱硝稳定性,NO脱除效率约40%。考察不同操作参数,如温度、水蒸汽含量、O2含量和空速对负载质量分数10%磷钨酸的活性炭催化剂催化氧化脱硝抗水性能的影响,最优操作条件:温度120 ℃,O2体积分数8%,水蒸汽体积分数6%,空速1 000 h-1,催化氧化反应的NO转化率达62%。 相似文献
17.
以商业煤基活性炭为原料,经低浓度氧气焙烧、H2O2氧化改性,并以四乙烯五胺(TEPA)浸渍,得到胺负载复合氧化活性炭,用于模拟烟道气[(15%(体积)CO2+85%(体积)N2)+10%(体积)H2O]中CO2吸附。低浓度氧气焙烧后,活性炭的最大比表面积和孔体积分别为1421.82 m2/g、0.83 cm3/g。经复合氧化改性后,活性炭的介孔体积增大,表面含氧官能团增加,使得TEPA负载复合氧化活性炭的CO2吸附性能提高。焙烧时间为4 h,H2O2氧化、负载40%TEPA的样品COAC-4-40TEPA,在60℃时CO2饱和吸附量最高为2.45 mmol/g,是TEPA负载未改性活性炭AC-40TEPA的2.02倍。经过十次吸附循环后,COAC-4-40TEPA的 CO2饱和吸附量可维持在92.24%,而TEPA的浸出量仅有0.67%。失活模型研究表明,COAC-4-40TEPA的初始吸附速率常数是AC-40TEPA的1.64倍,且失活速率常数低于AC-40TEPA。 相似文献
18.
以椰壳活性炭(YAC)为原料,通过NH4Br溶液浸渍改性,制备了溴素改性椰壳活性炭脱汞吸附剂(YAC-Br)。在固定床实验台上开展了YAC和YAC-Br的汞脱除实验,主要研究了入口汞(Hg0)浓度对YAC-Br脱汞性能的影响,并结合BET、SEM、XRF等表征手段分析了YAC-Br的脱汞原理。在0.3MW燃煤循环流化床锅炉上对YAC-Br进行了烟气管道喷射吸附剂脱汞(ACI)实验,验证了其在实际燃煤烟气中对汞的脱除效果。结果表明:改性过程不会破坏椰壳活性炭原有的孔隙结构和微孔容积,而会使活性炭表面更加平整;化学改性后活性炭表面Br负载量提高,成为Hg0的主要活性吸附位。固定床实验结果说明:改性后椰壳活性炭的初始汞吸附效率和单位累积汞吸附量分别提高了6.02倍和21.8倍,吸附效率随汞浓度增大而降低。0.3MW燃煤循环流化床实验结果表明:改性后椰壳活性炭对元素汞和氧化汞均有很好的脱除作用,脱汞效率随着吸附剂喷射量的增加而增加,当喷射量为0.7kg/h时,脱汞效率可达到76.38%。 相似文献