首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the selected apple dataset. After that, two pre-trained deep models are fine-tuning and trained using transfer learning. Then, a fusion technique is proposed named Parallel Correlation Threshold (PCT). The fused feature vector is optimized in the next step using a hybrid optimization algorithm. The selected features are finally classified using machine learning algorithms. Four different experiments have been carried out on the augmented Plant Village dataset and yielded the best accuracy of 99.8%. The accuracy of the proposed framework is also compared to that of several neural nets, and it outperforms them all.  相似文献   

2.
Human Action Recognition (HAR) is a current research topic in the field of computer vision that is based on an important application known as video surveillance. Researchers in computer vision have introduced various intelligent methods based on deep learning and machine learning, but they still face many challenges such as similarity in various actions and redundant features. We proposed a framework for accurate human action recognition (HAR) based on deep learning and an improved features optimization algorithm in this paper. From deep learning feature extraction to feature classification, the proposed framework includes several critical steps. Before training fine-tuned deep learning models – MobileNet-V2 and Darknet53 – the original video frames are normalized. For feature extraction, pre-trained deep models are used, which are fused using the canonical correlation approach. Following that, an improved particle swarm optimization (IPSO)-based algorithm is used to select the best features. Following that, the selected features were used to classify actions using various classifiers. The experimental process was performed on six publicly available datasets such as KTH, UT-Interaction, UCF Sports, Hollywood, IXMAS, and UCF YouTube, which attained an accuracy of 98.3%, 98.9%, 99.8%, 99.6%, 98.6%, and 100%, respectively. In comparison with existing techniques, it is observed that the proposed framework achieved improved accuracy.  相似文献   

3.
倪俊帅  赵梅  胡长青 《声学技术》2020,39(3):366-371
为了改善分类系统的性能,进一步提高舰船辐射噪声分类的正确率,该文提出了一种基于深度神经网络的多特征融合分类方法。该方法首先提取舰船辐射噪声几种不同的特征,将提取的特征同时用于训练具有多个输入分支的深度神经网络,使网络直接在多种特征参数上进行联合学习,通过神经网络的输入分支和连接层实现特征融合,再对舰船辐射噪声进行分类。为了特征深度学习提取了舰船辐射噪声的频谱特征、梅尔倒谱系数和功率谱特征,并将多特征融合分类方法与在一种特征上进行深度学习分类方法的正确率进行对比。实验结果表明,基于深度学习的多特征融合分类方法可以有效地提高舰船辐射噪声分类的正确率,是一种可行的分类方法。  相似文献   

4.
5.
This proposal aims to enhance the accuracy of a dermoscopic skin cancer diagnosis with the aid of novel deep learning architecture. The proposed skin cancer detection model involves four main steps: (a) preprocessing, (b) segmentation, (c) feature extraction, and (d) classification. The dermoscopic images initially subjected to a preprocessing step that includes image enhancement and hair removal. After preprocessing, the segmentation of lesion is deployed by an optimized region growing algorithm. In the feature extraction phase, local features, color morphology features, and morphological transformation-based features are extracted. Moreover, the classification phase uses a modified deep learning algorithm by merging the optimization concept into recurrent neural network (RNN). As the main contribution, the region growing and RNN improved by the modified deer hunting optimization algorithm (DHOA) termed as Fitness Adaptive DHOA (FA-DHOA). Finally, the analysis has been performed to verify the effectiveness of the proposed method.  相似文献   

6.
Background: In medical image analysis, the diagnosis of skin lesions remains a challenging task. Skin lesion is a common type of skin cancer that exists worldwide. Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer. Challenges: Many computerized methods have been introduced in the literature to classify skin cancers. However, challenges remain such as imbalanced datasets, low contrast lesions, and the extraction of irrelevant or redundant features. Proposed Work: In this study, a new technique is proposed based on the conventional and deep learning framework. The proposed framework consists of two major tasks: lesion segmentation and classification. In the lesion segmentation task, contrast is initially improved by the fusion of two filtering techniques and then performed a color transformation to color lesion area color discrimination. Subsequently, the best channel is selected and the lesion map is computed, which is further converted into a binary form using a thresholding function. In the lesion classification task, two pre-trained CNN models were modified and trained using transfer learning. Deep features were extracted from both models and fused using canonical correlation analysis. During the fusion process, a few redundant features were also added, lowering classification accuracy. A new technique called maximum entropy score-based selection (MESbS) is proposed as a solution to this issue. The features selected through this approach are fed into a cubic support vector machine (C-SVM) for the final classification. Results: The experimental process was conducted on two datasets: ISIC 2017 and HAM10000. The ISIC 2017 dataset was used for the lesion segmentation task, whereas the HAM10000 dataset was used for the classification task. The achieved accuracy for both datasets was 95.6% and 96.7%, respectively, which was higher than the existing techniques.  相似文献   

7.
Tumor detection has been an active research topic in recent years due to the high mortality rate. Computer vision (CV) and image processing techniques have recently become popular for detecting tumors in MRI images. The automated detection process is simpler and takes less time than manual processing. In addition, the difference in the expanding shape of brain tumor tissues complicates and complicates tumor detection for clinicians. We proposed a new framework for tumor detection as well as tumor classification into relevant categories in this paper. For tumor segmentation, the proposed framework employs the Particle Swarm Optimization (PSO) algorithm, and for classification, the convolutional neural network (CNN) algorithm. Popular preprocessing techniques such as noise removal, image sharpening, and skull stripping are used at the start of the segmentation process. Then, PSO-based segmentation is applied. In the classification step, two pre-trained CNN models, alexnet and inception-V3, are used and trained using transfer learning. Using a serial approach, features are extracted from both trained models and fused features for final classification. For classification, a variety of machine learning classifiers are used. Average dice values on datasets BRATS-2018 and BRATS-2017 are 98.11 percent and 98.25 percent, respectively, whereas average jaccard values are 96.30 percent and 96.57% (Segmentation Results). The results were extended on the same datasets for classification and achieved 99.0% accuracy, sensitivity of 0.99, specificity of 0.99, and precision of 0.99. Finally, the proposed method is compared to state-of-the-art existing methods and outperforms them.  相似文献   

8.
In the last decade, there has been a significant increase in medical cases involving brain tumors. Brain tumor is the tenth most common type of tumor, affecting millions of people. However, if it is detected early, the cure rate can increase. Computer vision researchers are working to develop sophisticated techniques for detecting and classifying brain tumors. MRI scans are primarily used for tumor analysis. We proposed an automated system for brain tumor detection and classification using a saliency map and deep learning feature optimization in this paper. The proposed framework was implemented in stages. In the initial phase of the proposed framework, a fusion-based contrast enhancement technique is proposed. In the following phase, a tumor segmentation technique based on saliency maps is proposed, which is then mapped on original images based on active contour. Following that, a pre-trained CNN model named EfficientNetB0 is fine-tuned and trained in two ways: on enhanced images and on tumor localization images. Deep transfer learning is used to train both models, and features are extracted from the average pooling layer. The deep learning features are then fused using an improved fusion approach known as Entropy Serial Fusion. The best features are chosen in the final step using an improved dragonfly optimization algorithm. Finally, the best features are classified using an extreme learning machine (ELM). The experimental process is conducted on three publically available datasets and achieved an improved accuracy of 95.14, 94.89, and 95.94%, respectively. The comparison with several neural nets shows the improvement of proposed framework.  相似文献   

9.
Automatic gastrointestinal (GI) tract disease recognition is an important application of biomedical image processing. Conventionally, microscopic analysis of pathological tissue is used to detect abnormal areas of the GI tract. The procedure is subjective and results in significant inter-/intra-observer variations in disease detection. Moreover, a huge frame rate in video endoscopy is an overhead for the pathological findings of gastroenterologists to observe every frame with a detailed examination. Consequently, there is a huge demand for a reliable computer-aided diagnostic system (CADx) for diagnosing GI tract diseases. In this work, a CADx was proposed for the diagnosis and classification of GI tract diseases. A novel framework is presented where preprocessing (LAB color space) is performed first; then local binary patterns (LBP) or texture and deep learning (inceptionNet, ResNet50, and VGG-16) features are fused serially to improve the prediction of the abnormalities in the GI tract. Additionally, principal component analysis (PCA), entropy, and minimum redundancy and maximum relevance (mRMR) feature selection methods were analyzed to acquire the optimized characteristics, and various classifiers were trained using the fused features. Open-source color image datasets (KVASIR, NERTHUS, and stomach ULCER) were used for performance evaluation. The study revealed that the subspace discriminant classifier provided an efficient result with 95.02% accuracy on the KVASIR dataset, which proved to be better than the existing state-of-the-art approaches.  相似文献   

10.
针对语音情感识别任务中特征提取单一、分类准确率低等问题,提出一种3D和1D多特征融合的情感识别方法,对特征提取算法进行改进。在3D网络,综合考虑空间特征学习和时间依赖性构造,利用双线性卷积神经网络(Bilinear Convolutional Neural Network,BCNN)提取空间特征,长短期记忆网络(Short-Term Memory Network,LSTM)和注意力(attention)机制提取显著的时间依赖特征。为降低说话者差异的影响,计算语音的对数梅尔特征(Log-Mel)和一阶差分、二阶差分特征合成3D Log-Mel特征集。在1D网络,利用一维卷积和LSTM的框架。最后3D和1D多特征融合得到判别性强的情感特征,利用softmax函数进行情感分类。在IEMOCAP和EMO-DB数据库上实验,平均识别率分别为61.22%和85.69%,同时与提取单一特征的3D和1D算法相比,多特征融合算法具有更好的识别性能。  相似文献   

11.
Brain tumor and brain stroke are two important causes of death in and around the world. The abnormalities in brain cell leads to brain stroke and obstruction in blood flow to brain cells leads to brain stroke. In this article, a computer aided automatic methodology is proposed to detect and segment ischemic stroke in brain MRI images using Adaptive Neuro Fuzzy Inference (ANFIS) classifier. The proposed method consists of preprocessing, feature extraction and classification. The brain image is enhanced using Heuristic histogram equalization technique. Then, texture and morphological features are extracted from the preprocessed image. These features are optimized using Genetic Algorithm and trained and classified using ANFIS classifier. The performance of the proposed ischemic stroke detection system is analyzed in terms of sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and Mathew's correlation coefficient.  相似文献   

12.
Human gait recognition (HGR) has received a lot of attention in the last decade as an alternative biometric technique. The main challenges in gait recognition are the change in in-person view angle and covariant factors. The major covariant factors are walking while carrying a bag and walking while wearing a coat. Deep learning is a new machine learning technique that is gaining popularity. Many techniques for HGR based on deep learning are presented in the literature. The requirement of an efficient framework is always required for correct and quick gait recognition. We proposed a fully automated deep learning and improved ant colony optimization (IACO) framework for HGR using video sequences in this work. The proposed framework consists of four primary steps. In the first step, the database is normalized in a video frame. In the second step, two pre-trained models named ResNet101 and InceptionV3 are selected and modified according to the dataset's nature. After that, we trained both modified models using transfer learning and extracted the features. The IACO algorithm is used to improve the extracted features. IACO is used to select the best features, which are then passed to the Cubic SVM for final classification. The cubic SVM employs a multiclass method. The experiment was carried out on three angles (0, 18, and 180) of the CASIA B dataset, and the accuracy was 95.2, 93.9, and 98.2 percent, respectively. A comparison with existing techniques is also performed, and the proposed method outperforms in terms of accuracy and computational time.  相似文献   

13.
The abnormal development of cells in brain leads to the formation of tumors in brain. In this article, image fusion based brain tumor detection and segmentation methodology is proposed using convolutional neural networks (CNN). This proposed methodology consists of image fusion, feature extraction, classification, and segmentation. Discrete wavelet transform (DWT) is used for image fusion and enhanced brain image is obtained by fusing the coefficients of the DWT transform. Further, Grey Level Co‐occurrence Matrix features are extracted and fed to the CNN classifier for glioma image classifications. Then, morphological operations with closing and opening functions are used to segment the tumor region in classified glioma brain image.  相似文献   

14.
Background—Human Gait Recognition (HGR) is an approach based on biometric and is being widely used for surveillance. HGR is adopted by researchers for the past several decades. Several factors are there that affect the system performance such as the walking variation due to clothes, a person carrying some luggage, variations in the view angle. Proposed—In this work, a new method is introduced to overcome different problems of HGR. A hybrid method is proposed or efficient HGR using deep learning and selection of best features. Four major steps are involved in this work-preprocessing of the video frames, manipulation of the pre-trained CNN model VGG-16 for the computation of the features, removing redundant features extracted from the CNN model, and classification. In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK. After that, the features of PSbK are fused in one materix. Finally, this fused vector is fed to the One against All Multi Support Vector Machine (OAMSVM) classifier for the final results. Results—The system is evaluated by utilizing the CASIA B database and six angles 00°, 18°, 36°, 54°, 72°, and 90° are used and attained the accuracy of 95.80%, 96.0%, 95.90%, 96.20%, 95.60%, and 95.50%, respectively. Conclusion—The comparison with recent methods show the proposed method work better.  相似文献   

15.
Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy. Deep learning provides a high performance for several medical image analysis applications. This paper proposes a deep learning model for the medical image fusion process. This model depends on Convolutional Neural Network (CNN). The basic idea of the proposed model is to extract features from both CT and MR images. Then, an additional process is executed on the extracted features. After that, the fused feature map is reconstructed to obtain the resulting fused image. Finally, the quality of the resulting fused image is enhanced by various enhancement techniques such as Histogram Matching (HM), Histogram Equalization (HE), fuzzy technique, fuzzy type Π, and Contrast Limited Histogram Equalization (CLAHE). The performance of the proposed fusion-based CNN model is measured by various metrics of the fusion and enhancement quality. Different realistic datasets of different modalities and diseases are tested and implemented. Also, real datasets are tested in the simulation analysis.  相似文献   

16.
In this study, a three-step remaining service life (RSL) prediction method, which involves feature extraction, feature selection, and fusion and prognostics, is proposed for large-scale rotating machinery in the presence of scarce failure data. In the feature extraction step, eight time-domain degradation features are extracted from the faulty variables. A fitness function as a weighted linear combination of the monotonicity, robustness, correlation, and trendability metrics is defined and used to evaluate the suitability of the features for RSL prediction. The selected features are merged using a canonical variate residuals-based method. In the prognostic step, gray model is used in combination with empirical Bayesian algorithm for RSL prediction in the presence of scarce failure data. The proposed approach is validated on failure data collected from an operational industrial centrifugal pump and a compressor.  相似文献   

17.
The need for a general purpose Content Based Image Retrieval (CBIR) system for huge image databases has attracted information-technology researchers and institutions for CBIR techniques development. These techniques include image feature extraction, segmentation, feature mapping, representation, semantics, indexing and storage, image similarity-distance measurement and retrieval making CBIR system development a challenge. Since medical images are large in size running to megabits of data they are compressed to reduce their size for storage and transmission. This paper investigates medical image retrieval problem for compressed images. An improved image classification algorithm for CBIR is proposed. In the proposed method, RAW images are compressed using Haar wavelet. Features are extracted using Gabor filter and Sobel edge detector. The extracted features are classified using Partial Recurrent Neural Network (PRNN). Since training parameters in Neural Network are NP hard, a hybrid Particle Swarm Optimization (PSO) – Cuckoo Search algorithm (CS) is proposed to optimize the learning rate of the neural network.  相似文献   

18.
The development of abnormal cells in human brain leads to the formation of tumors. This article proposes an efficient approach for brain tumor detection and segmentation using image fusion and co-active adaptive neuro fuzzy inference system (CANFIS) classification method. The brain MRI images are fused and the dual tree complex wavelet transform is applied on the fused image. Then, the statistical features, local ternary pattern features and gray level co-occurrence matrix features. These extracted features are classified using CANFIS classification approach for the classification of source brain MRI image into either normal or abnormal. Further, morphological operations are applied on the abnormal brain MRI image for segmenting the tumor regions. The proposed methodology is evaluated with respect to the performance metrics sensitivity, specificity, positive predictive value, negative predictive value, tumor segmentation accuracy with detection rate. The proposed image fusion based brain tumor detection and classification methodology stated in this article achieves 96.5% of average sensitivity, 97.7% of average specificity, 87.6% of positive predictive value, 96.6% of negative predictive value, and 98.8% of average accuracy.  相似文献   

19.
Hydraulic pump degradation feature extraction is a key step of condition-based maintenance. Since vibration signals of hydraulic pumps during degradation are strongly nonlinear and the feature information is too weak to be effectively extracted, a method based upon MUWDF and MF-DFA is proposed. Initially, the MUWDF is presented to reduce disturbances and improve feature information. Approximate signals of various decomposition layers are selected by feature energy factor and fused according to the presented fusion rules. On this basis, the fused signal is further processed by MF-DFA with a sliding window. Multi-fractal spectrum sensitive factors are selected to be the degradation feature vector of the hydraulic pump. The proposed method is verified by vibration signals sampled in a hydraulic pump degradation experiment.  相似文献   

20.
针对齿轮在复杂运行工况下故障特征提取困难,传统故障诊断方法的识别精度易受人工提取特征的影响,以及单传感器获取信息不全面等问题,提出基于深度置信网络(DBN)与信息融合的齿轮故障诊断方法。通过多传感器信息融合技术对每个传感器采集的振动信号进行数据层融合;利用DBN进行自适应特征提取从而实现故障分类。为了避免因人为选择DBN结构参数,导致模型识别精度下降的问题,利用改进的混合蛙跳算法(ISFLA)对DBN结构参数进行优化。试验表明,与BP神经网络、未经优化的DBN以及单传感器故障诊断相比,该研究提出的信息融合及优化方法具有更高的故障识别精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号