共查询到20条相似文献,搜索用时 15 毫秒
1.
Zainab Nayyar Muhammad Attique Khan Musaed Alhussein Muhammad Nazir Khursheed Aurangzeb Yunyoung Nam Seifedine Kadry Syed Irtaza Haider 《计算机、材料和连续体(英文)》2021,68(2):2041-2056
Artificial intelligence aids for healthcare have received a great deal of attention. Approximately one million patients with gastrointestinal diseases have been diagnosed via wireless capsule endoscopy (WCE). Early diagnosis facilitates appropriate treatment and saves lives. Deep learning-based techniques have been used to identify gastrointestinal ulcers, bleeding sites, and polyps. However, small lesions may be misclassified. We developed a deep learning-based best-feature method to classify various stomach diseases evident in WCE images. Initially, we use hybrid contrast enhancement to distinguish diseased from normal regions. Then, a pretrained model is fine-tuned, and further training is done via transfer learning. Deep features are extracted from the last two layers and fused using a vector length-based approach. We improve the genetic algorithm using a fitness function and kurtosis to select optimal features that are graded by a classifier. We evaluate a database containing 24,000 WCE images of ulcers, bleeding sites, polyps, and healthy tissue. The cubic support vector machine classifier was optimal; the average accuracy was 99%. 相似文献
2.
Samra Rehman Muhammad Attique Khan Majed Alhaisoni Ammar Armghan Usman Tariq Fayadh Alenezi Ye Jin Kim Byoungchol Chang 《计算机、材料和连续体(英文)》2023,75(1):697-714
Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the selected apple dataset. After that, two pre-trained deep models are fine-tuning and trained using transfer learning. Then, a fusion technique is proposed named Parallel Correlation Threshold (PCT). The fused feature vector is optimized in the next step using a hybrid optimization algorithm. The selected features are finally classified using machine learning algorithms. Four different experiments have been carried out on the augmented Plant Village dataset and yielded the best accuracy of 99.8%. The accuracy of the proposed framework is also compared to that of several neural nets, and it outperforms them all. 相似文献
3.
4.
D. Venugopal T. Jayasankar Mohamed Yacin Sikkandar Mohamed Ibrahim Waly Irina V. Pustokhina Denis A. Pustokhin K. Shankar 《计算机、材料和连续体(英文)》2021,68(3):2877-2893
Data fusion is one of the challenging issues, the healthcare sector is facing in the recent years. Proper diagnosis from digital imagery and treatment are deemed to be the right solution. Intracerebral Haemorrhage (ICH), a condition characterized by injury of blood vessels in brain tissues, is one of the important reasons for stroke. Images generated by X-rays and Computed Tomography (CT) are widely used for estimating the size and location of hemorrhages. Radiologists use manual planimetry, a time-consuming process for segmenting CT scan images. Deep Learning (DL) is the most preferred method to increase the efficiency of diagnosing ICH. In this paper, the researcher presents a unique multi-modal data fusion-based feature extraction technique with Deep Learning (DL) model, abbreviated as FFE-DL for Intracranial Haemorrhage Detection and Classification, also known as FFEDL-ICH. The proposed FFEDL-ICH model has four stages namely, preprocessing, image segmentation, feature extraction, and classification. The input image is first preprocessed using the Gaussian Filtering (GF) technique to remove noise. Secondly, the Density-based Fuzzy C-Means (DFCM) algorithm is used to segment the images. Furthermore, the Fusion-based Feature Extraction model is implemented with handcrafted feature (Local Binary Patterns) and deep features (Residual Network-152) to extract useful features. Finally, Deep Neural Network (DNN) is implemented as a classification technique to differentiate multiple classes of ICH. The researchers, in the current study, used benchmark Intracranial Haemorrhage dataset and simulated the FFEDL-ICH model to assess its diagnostic performance. The findings of the study revealed that the proposed FFEDL-ICH model has the ability to outperform existing models as there is a significant improvement in its performance. For future researches, the researcher recommends the performance improvement of FFEDL-ICH model using learning rate scheduling techniques for DNN. 相似文献
5.
Amina Bibi Muhamamd Attique Khan Muhammad Younus Javed Usman Tariq Byeong-Gwon Kang Yunyoung Nam Reham R. Mostafa Rasha H. Sakr 《计算机、材料和连续体(英文)》2022,71(2):2477-2495
Background: In medical image analysis, the diagnosis of skin lesions remains a challenging task. Skin lesion is a common type of skin cancer that exists worldwide. Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer. Challenges: Many computerized methods have been introduced in the literature to classify skin cancers. However, challenges remain such as imbalanced datasets, low contrast lesions, and the extraction of irrelevant or redundant features. Proposed Work: In this study, a new technique is proposed based on the conventional and deep learning framework. The proposed framework consists of two major tasks: lesion segmentation and classification. In the lesion segmentation task, contrast is initially improved by the fusion of two filtering techniques and then performed a color transformation to color lesion area color discrimination. Subsequently, the best channel is selected and the lesion map is computed, which is further converted into a binary form using a thresholding function. In the lesion classification task, two pre-trained CNN models were modified and trained using transfer learning. Deep features were extracted from both models and fused using canonical correlation analysis. During the fusion process, a few redundant features were also added, lowering classification accuracy. A new technique called maximum entropy score-based selection (MESbS) is proposed as a solution to this issue. The features selected through this approach are fed into a cubic support vector machine (C-SVM) for the final classification. Results: The experimental process was conducted on two datasets: ISIC 2017 and HAM10000. The ISIC 2017 dataset was used for the lesion segmentation task, whereas the HAM10000 dataset was used for the classification task. The achieved accuracy for both datasets was 95.6% and 96.7%, respectively, which was higher than the existing techniques. 相似文献
6.
Awais Khan Muhammad Attique Khan Muhammad Younus Javed Majed Alhaisoni Usman Tariq Seifedine Kadry Jung-In Choi Yunyoung Nam 《计算机、材料和连续体(英文)》2022,70(2):2113-2130
Human gait recognition (HGR) has received a lot of attention in the last decade as an alternative biometric technique. The main challenges in gait recognition are the change in in-person view angle and covariant factors. The major covariant factors are walking while carrying a bag and walking while wearing a coat. Deep learning is a new machine learning technique that is gaining popularity. Many techniques for HGR based on deep learning are presented in the literature. The requirement of an efficient framework is always required for correct and quick gait recognition. We proposed a fully automated deep learning and improved ant colony optimization (IACO) framework for HGR using video sequences in this work. The proposed framework consists of four primary steps. In the first step, the database is normalized in a video frame. In the second step, two pre-trained models named ResNet101 and InceptionV3 are selected and modified according to the dataset's nature. After that, we trained both modified models using transfer learning and extracted the features. The IACO algorithm is used to improve the extracted features. IACO is used to select the best features, which are then passed to the Cubic SVM for final classification. The cubic SVM employs a multiclass method. The experiment was carried out on three angles (0, 18, and 180) of the CASIA B dataset, and the accuracy was 95.2, 93.9, and 98.2 percent, respectively. A comparison with existing techniques is also performed, and the proposed method outperforms in terms of accuracy and computational time. 相似文献
7.
Asif Mehmood Muhammad Attique Khan Usman Tariq Chang-Won Jeong Yunyoung Nam Reham R. Mostafa Amira ElZeiny 《计算机、材料和连续体(英文)》2022,70(1):343-361
Background—Human Gait Recognition (HGR) is an approach based on biometric and is being widely used for surveillance. HGR is adopted by researchers for the past several decades. Several factors are there that affect the system performance such as the walking variation due to clothes, a person carrying some luggage, variations in the view angle. Proposed—In this work, a new method is introduced to overcome different problems of HGR. A hybrid method is proposed or efficient HGR using deep learning and selection of best features. Four major steps are involved in this work-preprocessing of the video frames, manipulation of the pre-trained CNN model VGG-16 for the computation of the features, removing redundant features extracted from the CNN model, and classification. In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK. After that, the features of PSbK are fused in one materix. Finally, this fused vector is fed to the One against All Multi Support Vector Machine (OAMSVM) classifier for the final results. Results—The system is evaluated by utilizing the CASIA B database and six angles 00°, 18°, 36°, 54°, 72°, and 90° are used and attained the accuracy of 95.80%, 96.0%, 95.90%, 96.20%, 95.60%, and 95.50%, respectively. Conclusion—The comparison with recent methods show the proposed method work better. 相似文献
8.
With the development of Deep Convolutional Neural Networks (DCNNs), the extracted features for image recognition tasks have shifted from low-level features to thehigh-level semantic features of DCNNs. Previous studies have shown that the deeper the network is, the more abstract the features are. However, the recognition ability of deep features would be limited by insufficient training samples. To address this problem, this paper derives an improved Deep Fusion Convolutional Neural Network (DF-Net) which can make full use of the differences and complementarities during network learning and enhance feature expression under the condition of limited datasets. Specifically, DF-Net organizes two identical subnets to extract features from the input image in parallel, and then a well-designed fusion module is introduced to the deep layer of DF-Net to fuse the subnet’s features in multi-scale. Thus, the more complex mappings are created and the more abundant and accurate fusion features can be extracted to improve recognition accuracy. Furthermore, a corresponding training strategy is also proposed to speed up the convergence and reduce the computation overhead of network training. Finally, DF-Nets based on the well-known ResNet, DenseNet and MobileNetV2 are evaluated on CIFAR100, Stanford Dogs, and UECFOOD-100. Theoretical analysis and experimental results strongly demonstrate that DF-Net enhances the performance of DCNNs and increases the accuracy of image recognition. 相似文献
9.
Muhammad Naeem Akbar Farhan Riaz Ahmed Bilal Awan Muhammad Attique Khan Usman Tariq Saad Rehman 《计算机、材料和连续体(英文)》2022,73(2):2555-2576
Human Action Recognition (HAR) is a current research topic in the field of computer vision that is based on an important application known as video surveillance. Researchers in computer vision have introduced various intelligent methods based on deep learning and machine learning, but they still face many challenges such as similarity in various actions and redundant features. We proposed a framework for accurate human action recognition (HAR) based on deep learning and an improved features optimization algorithm in this paper. From deep learning feature extraction to feature classification, the proposed framework includes several critical steps. Before training fine-tuned deep learning models – MobileNet-V2 and Darknet53 – the original video frames are normalized. For feature extraction, pre-trained deep models are used, which are fused using the canonical correlation approach. Following that, an improved particle swarm optimization (IPSO)-based algorithm is used to select the best features. Following that, the selected features were used to classify actions using various classifiers. The experimental process was performed on six publicly available datasets such as KTH, UT-Interaction, UCF Sports, Hollywood, IXMAS, and UCF YouTube, which attained an accuracy of 98.3%, 98.9%, 99.8%, 99.6%, 98.6%, and 100%, respectively. In comparison with existing techniques, it is observed that the proposed framework achieved improved accuracy. 相似文献
10.
Muhammad Rizwan Latif Muhamamd Attique Khan Muhammad Younus Javed Haris Masood Usman Tariq Yunyoung Nam Seifedine Kadry 《计算机、材料和连续体(英文)》2021,69(3):2917-2932
Globally, Pakistan ranks 4 in cotton production, 6 as an importer of raw cotton, and 3 in cotton consumption. Nearly 10% of GDP and 55% of the country's foreign exchange earnings depend on cotton products. Approximately 1.5 million people in Pakistan are engaged in the cotton value chain. However, several diseases such as Mildew, Leaf Spot, and Soreshine affect cotton production. Manual diagnosis is not a good solution due to several factors such as high cost and unavailability of an expert. Therefore, it is essential to develop an automated technique that can accurately detect and recognize these diseases at their early stages. In this study, a new technique is proposed using deep learning architecture with serially fused features and the best feature selection. The proposed architecture consists of the following steps: (a) a self-collected dataset of cotton diseases is prepared and labeled by an expert; (b) data augmentation is performed on the collected dataset to increase the number of images for better training at the earlier step; (c) a pre-trained deep learning model named ResNet101 is employed and trained through a transfer learning approach; (d) features are computed from the third and fourth last layers and serially combined into one matrix; (e) a genetic algorithm is applied to the combined matrix to select the best points for further recognition. For final recognition, a Cubic SVM approach was utilized and validated on a prepared dataset. On the newly prepared dataset, the highest achieved accuracy was 98.8% using Cubic SVM, which shows the perfection of the proposed framework.. 相似文献
11.
R. Rajagopal 《International journal of imaging systems and technology》2019,29(3):353-359
The uncontrolled growth of cells in brain regions leads to the tumor regions and these abnormal tumor regions are scanned by magnetic resonance imaging (MRI) technique as an image. This paper proposes random forest classifier based Glioma brain tumor detection and segmentation methodology using feature optimization technique. The texture features are derived from brain MRI image and these derived feature set are now optimized by ant colony optimization algorithm. These optimized set of features are trained and classified using random forest classification method. This classifier classifies the brain MRI image into Glioma or non-Glioma image based on the optimized set of features. Furthermore, energy-based segmentation method is applied on the classified Glioma image for segmenting the tumor regions. The proposed methodology for Glioma brain tumor stated in this paper achieves 97.7% of sensitivity, 96.5% of specificity, and 98.01% of accuracy. 相似文献
12.
Mingzhe Li;Ningfeng Que;Juanhua Zhang;Pingfang Du;Yin Dai; 《International journal of imaging systems and technology》2024,34(5):e23161
Cervical cancer is a common malignancy worldwide with high incidence and mortality rates in underdeveloped countries. The Pap smear test, widely used for early detection of cervical cancer, aims to minimize missed diagnoses, which sometimes results in higher false-positive rates. To enhance manual screening practices, computer-aided diagnosis (CAD) systems based on machine learning (ML) and deep learning (DL) for classifying cervical Pap cells have been extensively researched. In our study, we introduced a DL-based method named VTCNet for the task of cervical cell classification. Our approach combines CNN-SPPF and ViT components, integrating modules like Focus and SeparableC3, to capture more potential information, extract local and global features, and merge them to enhance classification performance. We evaluated our method on the public SIPaKMeD dataset, achieving accuracies, precision, recall, and F1 scores of 97.16%, 97.22%, 97.19%, and 97.18%, respectively. We also conducted additional experiments on the Herlev dataset, where our results outperformed previous methods. The VTCNet method achieved higher classification accuracy than traditional ML or shallow DL models through this integration. Related codes: https://github.com/Camellia-0892/VTCNet/tree/main. 相似文献
13.
14.
Pulmonary diseases are common throughout the world, especially in developing countries. These diseases include chronic obstructive pulmonary diseases, pneumonia, asthma, tuberculosis, fibrosis, and recently COVID-19. In general, pulmonary diseases have a similar footprint on chest radiographs which makes them difficult to discriminate even for expert radiologists. In recent years, many image processing techniques and artificial intelligence models have been developed to quickly and accurately diagnose lung diseases. In this paper, the performance of four popular pretrained models (namely VGG16, DenseNet201, DarkNet19, and XceptionNet) in distinguishing between different pulmonary diseases was analyzed. To the best of our knowledge, this is the first published study to ever attempt to distinguish all four cases normal, pneumonia, COVID-19 and lung opacity from Chest-X-Ray (CXR) images. All models were trained using Chest-X-Ray (CXR) images, and statistically tested using 5-fold cross validation. Using individual models, XceptionNet outperformed all other models with a 94.775% accuracy and Area Under the Curve (AUC) of Receiver Operating Characteristic (ROC) of 99.84%. On the other hand, DarkNet19 represents a good compromise between accuracy, fast convergence, resource utilization, and near real time detection (0.33 s). Using a collection of models, the 97.79% accuracy achieved by Ensemble Features was the highest among all surveyed methods, but it takes the longest time to predict an image (5.68 s). An efficient effective decision support system can be developed using one of those approaches to assist radiologists in the field make the right assessment in terms of accuracy and prediction time, such a dependable system can be used in rural areas and various healthcare sectors. 相似文献
15.
Muhammad Ali Jamal Hussain Shah Muhammad Attique Khan Majed Alhaisoni Usman Tariq Tallha Akram Ye Jin Kim Byoungchol Chang 《计算机、材料和连续体(英文)》2022,73(3):4501-4518
Tumor detection has been an active research topic in recent years due to the high mortality rate. Computer vision (CV) and image processing techniques have recently become popular for detecting tumors in MRI images. The automated detection process is simpler and takes less time than manual processing. In addition, the difference in the expanding shape of brain tumor tissues complicates and complicates tumor detection for clinicians. We proposed a new framework for tumor detection as well as tumor classification into relevant categories in this paper. For tumor segmentation, the proposed framework employs the Particle Swarm Optimization (PSO) algorithm, and for classification, the convolutional neural network (CNN) algorithm. Popular preprocessing techniques such as noise removal, image sharpening, and skull stripping are used at the start of the segmentation process. Then, PSO-based segmentation is applied. In the classification step, two pre-trained CNN models, alexnet and inception-V3, are used and trained using transfer learning. Using a serial approach, features are extracted from both trained models and fused features for final classification. For classification, a variety of machine learning classifiers are used. Average dice values on datasets BRATS-2018 and BRATS-2017 are 98.11 percent and 98.25 percent, respectively, whereas average jaccard values are 96.30 percent and 96.57% (Segmentation Results). The results were extended on the same datasets for classification and achieved 99.0% accuracy, sensitivity of 0.99, specificity of 0.99, and precision of 0.99. Finally, the proposed method is compared to state-of-the-art existing methods and outperforms them. 相似文献
16.
With the development of deep learning and Convolutional Neural Networks (CNNs), the accuracy of automatic food recognition based on visual data have significantly improved. Some research studies have shown that the deeper the model is, the higher the accuracy is. However, very deep neural networks would be affected by the overfitting problem and also consume huge computing resources. In this paper, a new classification scheme is proposed for automatic food-ingredient recognition based on deep learning. We construct an up-to-date combinational convolutional neural network (CBNet) with a subnet merging technique. Firstly, two different neural networks are utilized for learning interested features. Then, a well-designed feature fusion component aggregates the features from subnetworks, further extracting richer and more precise features for image classification. In order to learn more complementary features, the corresponding fusion strategies are also proposed, including auxiliary classifiers and hyperparameters setting. Finally, CBNet based on the well-known VGGNet, ResNet and DenseNet is evaluated on a dataset including 41 major categories of food ingredients and 100 images for each category. Theoretical analysis and experimental results demonstrate that CBNet achieves promising accuracy for multi-class classification and improves the performance of convolutional neural networks. 相似文献
17.
Image captioning involves two different major modalities (image and sentence) that convert a given image into a language that adheres to visual semantics. Almost all methods first extract image features to reduce the difficulty of visual semantic embedding and then use the caption model to generate fluent sentences. The Convolutional Neural Network (CNN) is often used to extract image features in image captioning, and the use of object detection networks to extract region features has achieved great success. However, the region features retrieved by this method are object-level and do not pay attention to fine-grained details because of the detection model’s limitation. We offer an approach to address this issue that more properly generates captions by fusing fine-grained features and region features. First, we extract fine-grained features using a panoramic segmentation algorithm. Second, we suggest two fusion methods and contrast their fusion outcomes. An X-linear Attention Network (X-LAN) serves as the foundation for both fusion methods. According to experimental findings on the COCO dataset, the two-branch fusion approach is superior. It is important to note that on the COCO Karpathy test split, CIDEr is increased up to 134.3% in comparison to the baseline, highlighting the potency and viability of our method. 相似文献
18.
针对高光谱高分辨率带来巨大数据量和空间分辨率引起混合像元的问题,提出了基于子空间(subspace)的字典偶学习(DPL)算法,简称DPLsub算法。DPL算法是对字典学习的改进,它通过学习得到综合字典和分析字典,在模式识别中体现了高效性,而子空间投影的方法能更好地表征噪声和高度混合的像元。将光谱和空间特征融合的方法用于分类研究试验。实验数据是两幅高光谱影像,比较了子空间字典偶学习(DPLsub)模型和其他三种分类器即最小二乘支持向量机(LS-SVM)、稀疏多分类回归(SMLR)和字典学习(DL-OMP)的分类结果。实验结果显示,DPLsub算法无论在时间上还是精度上都优于其他算法,证明了这种子空间字典偶学习方法对高光谱图像分类的可行性与高效性。 相似文献
19.
张望发 《广东工业大学高等工程教育研究》2007,7(1):62-64
汉语词类问题主要表现在以下三个方面:一是汉语词类划分的标准不一致,划分不彻底,有时很难对某个具体的词进行归类;二是语素、词、短语界限不清,界定标准操作性不强;三是对词语的语法特征认识不深刻,观点还没有统一起来,语法特征与词类的关系定位模糊不清。词类要走出现状,划分标准应该一致,词类的划界应具有较强的可操作性,语法特征尽可能解释整个词类。 相似文献
20.
K. Michael Mahesh J. Arokia Renjit 《International journal of imaging systems and technology》2020,30(1):234-251
Brain tumor segmentation and classification is a crucial challenge in diagnosing, planning, and treating brain tumors. This article proposes an automatic method that categorizes the severity level of the tumors to render an effective diagnosis. The proposed fractional Jaya optimizer-deep convolutional neural network undergoes the severity classification based on the features obtained from the segments of the magnetic resonance imaging (MRI) images. The segments are obtained using the particle swarm optimization that ensures the optimal selection of the segments from the MRI image and yields the core tumor and the edema tumor regions. The experimentation using the BRATS database reveals that the proposed method acquired a maximal accuracy, specificity, and sensitivity of 0.9414, 0.9429, and 0.9708, respectively. 相似文献