首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The outbreak of the pandemic, caused by Coronavirus Disease 2019 (COVID-19), has affected the daily activities of people across the globe. During COVID-19 outbreak and the successive lockdowns, Twitter was heavily used and the number of tweets regarding COVID-19 increased tremendously. Several studies used Sentiment Analysis (SA) to analyze the emotions expressed through tweets upon COVID-19. Therefore, in current study, a new Artificial Bee Colony (ABC) with Machine Learning-driven SA (ABCML-SA) model is developed for conducting Sentiment Analysis of COVID-19 Twitter data. The prime focus of the presented ABCML-SA model is to recognize the sentiments expressed in tweets made upon COVID-19. It involves data pre-processing at the initial stage followed by n-gram based feature extraction to derive the feature vectors. For identification and classification of the sentiments, the Support Vector Machine (SVM) model is exploited. At last, the ABC algorithm is applied to fine tune the parameters involved in SVM. To demonstrate the improved performance of the proposed ABCML-SA model, a sequence of simulations was conducted. The comparative assessment results confirmed the effectual performance of the proposed ABCML-SA model over other approaches.  相似文献   

2.
Diabetics is one of the world’s most common diseases which are caused by continued high levels of blood sugar. The risk of diabetics can be lowered if the diabetic is found at the early stage. In recent days, several machine learning models were developed to predict the diabetic presence at an early stage. In this paper, we propose an embedded-based machine learning model that combines the split-vote method and instance duplication to leverage an imbalanced dataset called PIMA Indian to increase the prediction of diabetics. The proposed method uses both the concept of over-sampling and under-sampling along with model weighting to increase the performance of classification. Different measures such as Accuracy, Precision, Recall, and F1-Score are used to evaluate the model. The results we obtained using K-Nearest Neighbor (kNN), Naïve Bayes (NB), Support Vector Machines (SVM), Random Forest (RF), Logistic Regression (LR), and Decision Trees (DT) were 89.32%, 91.44%, 95.78%, 89.3%, 81.76%, and 80.38% respectively. The SVM model is more efficient than other models which are 21.38% more than exiting machine learning-based works.  相似文献   

3.
Applied linguistics is an interdisciplinary domain which identifies, investigates, and offers solutions to language-related real-life problems. The new coronavirus disease, otherwise known as Coronavirus disease (COVID-19), has severely affected the everyday life of people all over the world. Specifically, since there is insufficient access to vaccines and no straight or reliable treatment for coronavirus infection, the country has initiated the appropriate preventive measures (like lockdown, physical separation, and masking) for combating this extremely transmittable disease. So, individuals spent more time on online social media platforms (i.e., Twitter, Facebook, Instagram, LinkedIn, and Reddit) and expressed their thoughts and feelings about coronavirus infection. Twitter has become one of the popular social media platforms and allows anyone to post tweets. This study proposes a sine cosine optimization with bidirectional gated recurrent unit-based sentiment analysis (SCOBGRU-SA) on COVID-19 tweets. The SCOBGRU-SA technique aimed to detect and classify the various sentiments in Twitter data during the COVID-19 pandemic. The SCOBGRU-SA technique follows data pre-processing and the Fast-Text word embedding process to accomplish this. Moreover, the BGRU model is utilized to recognise and classify sentiments present in the tweets. Furthermore, the SCO algorithm is exploited for tuning the BGRU method’s hyperparameter, which helps attain improved classification performance. The experimental validation of the SCOBGRU-SA technique takes place using a benchmark dataset, and the results signify its promising performance compared to other DL models.  相似文献   

4.
As the COVID-19 pandemic swept the globe, social media platforms became an essential source of information and communication for many. International students, particularly, turned to Twitter to express their struggles and hardships during this difficult time. To better understand the sentiments and experiences of these international students, we developed the Situational Aspect-Based Annotation and Classification (SABAC) text mining framework. This framework uses a three-layer approach, combining baseline Deep Learning (DL) models with Machine Learning (ML) models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset. Using the proposed aspect2class annotation algorithm, we labeled bulk unlabeled tweets according to their contained aspect terms. However, we also recognized the challenges of reducing data’s high dimensionality and sparsity to improve performance and annotation on unlabeled datasets. To address this issue, we proposed the Volatile Stopwords Filtering (VSF) technique to reduce sparsity and enhance classifier performance. The resulting Student-COVID Twitter dataset achieved a sophisticated accuracy of 93.21% when using the random forest as a meta-classifier. Through testing on three benchmark datasets, we found that the SABAC ensemble framework performed exceptionally well. Our findings showed that international students during the pandemic faced various issues, including stress, uncertainty, health concerns, financial stress, and difficulties with online classes and returning to school. By analyzing and summarizing these annotated tweets, decision-makers can better understand and address the real-time problems international students face during the ongoing pandemic.  相似文献   

5.
6.
This paper examines the effects of online campaigns celebrating frontline workers on COVID-19 outcomes regarding new cases, deaths, and vaccinations, using the United Kingdom as a case study. We implement text and sentiment analysis on Twitter data and feed the result into random regression forests and cointegration analysis. Our combined machine learning and econometric approach shows very weak effects of both the volume and the sentiment of Twitter discussions on new cases, deaths, and vaccinations. On the other hand, established relationships (such as between stringency measures and cases/deaths and between vaccinations and deaths) are confirmed. On the contrary, we find adverse lagged effects from negative sentiment to vaccinations and from new cases to negative sentiment posts. As we assess the knowledge acquired from the COVID-19 crisis, our findings can be used by policy makers, particularly in public health, and prepare for the next pandemic.  相似文献   

7.
Epilepsy is a type of brain disorder that causes recurrent seizures. It is the second most common neurological disease after Alzheimer’s. The effects of epilepsy in children are serious, since it causes a slower growth rate and a failure to develop certain skills. In the medical field, specialists record brain activity using an Electroencephalogram (EEG) to observe the epileptic seizures. The detection of these seizures is performed by specialists, but the results might not be accurate due to human errors; therefore, automated detection of epileptic pediatric seizures might be the optimal solution. This paper investigates the detection of epileptic seizures by applying supervised machine learning techniques. The techniques applied on the data of patients with ages seven years and below from children’s hospital boston massachusetts institute of technology (CHB-MIT) scalp EEG database of epileptic pediatric signals. A group of Naïve Bayes (NB), Support vector machine (SVM), Logistic regression (LR), k-nearest neighbor (KNN), Linear discernment (LD), Decision tree (DT), and ensemble learning methods were applied to the classification process. The results demonstrated the outperformance of the present study by achieving 100% for all parameters using the Ensemble learning model in contrast to state-of-the-art studies in the literature. Similarly, the SVM model achieved performance with 98.3% for sensitivity, 97.7% for specificity, and 98% for accuracy. The results of the LD and LR models reveal the lower performance i.e., the sensitivity at 66.9%–68.9%, specificity at 73.5%–77.1%, and accuracy at 70.2%–73%.  相似文献   

8.
The COVID-19 pandemic poses an additional serious public health threat due to little or no pre-existing human immunity, and developing a system to identify COVID-19 in its early stages will save millions of lives. This study applied support vector machine (SVM), k-nearest neighbor (K-NN) and deep learning convolutional neural network (CNN) algorithms to classify and detect COVID-19 using chest X-ray radiographs. To test the proposed system, chest X-ray radiographs and CT images were collected from different standard databases, which contained 95 normal images, 140 COVID-19 images and 10 SARS images. Two scenarios were considered to develop a system for predicting COVID-19. In the first scenario, the Gaussian filter was applied to remove noise from the chest X-ray radiograph images, and then the adaptive region growing technique was used to segment the region of interest from the chest X-ray radiographs. After segmentation, a hybrid feature extraction composed of 2D-DWT and gray level co-occurrence matrix was utilized to extract the features significant for detecting COVID-19. These features were processed using SVM and K-NN. In the second scenario, a CNN transfer model (ResNet 50) was used to detect COVID-19. The system was examined and evaluated through multiclass statistical analysis, and the empirical results of the analysis found significant values of 97.14%, 99.34%, 99.26%, 99.26% and 99.40% for accuracy, specificity, sensitivity, recall and AUC, respectively. Thus, the CNN model showed significant success; it achieved optimal accuracy, effectiveness and robustness for detecting COVID-19.  相似文献   

9.
The growing number of COVID-19 cases puts pressure on healthcare services and public institutions worldwide. The pandemic has brought much uncertainty to the global economy and the situation in general. Forecasting methods and modeling techniques are important tools for governments to manage critical situations caused by pandemics, which have negative impact on public health. The main purpose of this study is to obtain short-term forecasts of disease epidemiology that could be useful for policymakers and public institutions to make necessary short-term decisions. To evaluate the effectiveness of the proposed attention-based method combining certain data mining algorithms and the classical ARIMA model for short-term forecasts, data on the spread of the COVID-19 virus in Lithuania is used, the forecasts of epidemic dynamics were examined, and the results were presented in the study. Nevertheless, the approach presented might be applied to any country and other pandemic situations. The COVID-19 outbreak started at different times in different countries, hence some countries have a longer history of the disease with more historical data than others. The paper proposes a novel approach to data registration and machine learning-based analysis using data from attention-based countries for forecast validation to predict trends of the spread of COVID-19 and assess risks.  相似文献   

10.
In recent years, Digital Twin (DT) has gained significant interest from academia and industry due to the advanced in information technology, communication systems, Artificial Intelligence (AI), Cloud Computing (CC), and Industrial Internet of Things (IIoT). The main concept of the DT is to provide a comprehensive tangible, and operational explanation of any element, asset, or system. However, it is an extremely dynamic taxonomy developing in complexity during the life cycle that produces a massive amount of engendered data and information. Likewise, with the development of AI, digital twins can be redefined and could be a crucial approach to aid the Internet of Things (IoT)-based DT applications for transferring the data and value onto the Internet with better decision-making. Therefore, this paper introduces an efficient DT-based fault diagnosis model based on machine learning (ML) tools. In this framework, the DT model of the machine is constructed by creating the simulation model. In the proposed framework, the Genetic algorithm (GA) is used for the optimization task to improve the classification accuracy. Furthermore, we evaluate the proposed fault diagnosis framework using performance metrics such as precision, accuracy, F-measure, and recall. The proposed framework is comprehensively examined using the triplex pump fault diagnosis. The experimental results demonstrated that the hybrid GA-ML method gives outstanding results compared to ML methods like Logistic Regression (LR), Naïve Bayes (NB), and Support Vector Machine (SVM). The suggested framework achieves the highest accuracy of 95% for the employed hybrid GA-SVM. The proposed framework will effectively help industrial operators make an appropriate decision concerning the fault analysis for IIoT applications in the context of Industry 4.0.  相似文献   

11.
This study is designed to develop Artificial Intelligence (AI) based analysis tool that could accurately detect COVID-19 lung infections based on portable chest x-rays (CXRs). The frontline physicians and radiologists suffer from grand challenges for COVID-19 pandemic due to the suboptimal image quality and the large volume of CXRs. In this study, AI-based analysis tools were developed that can precisely classify COVID-19 lung infection. Publicly available datasets of COVID-19 (N = 1525), non-COVID-19 normal (N = 1525), viral pneumonia (N = 1342) and bacterial pneumonia (N = 2521) from the Italian Society of Medical and Interventional Radiology (SIRM), Radiopaedia, The Cancer Imaging Archive (TCIA) and Kaggle repositories were taken. A multi-approach utilizing deep learning ResNet101 with and without hyperparameters optimization was employed. Additionally, the features extracted from the average pooling layer of ResNet101 were used as input to machine learning (ML) algorithms, which twice trained the learning algorithms. The ResNet101 with optimized parameters yielded improved performance to default parameters. The extracted features from ResNet101 are fed to the k-nearest neighbor (KNN) and support vector machine (SVM) yielded the highest 3-class classification performance of 99.86% and 99.46%, respectively. The results indicate that the proposed approach can be better utilized for improving the accuracy and diagnostic efficiency of CXRs. The proposed deep learning model has the potential to improve further the efficiency of the healthcare systems for proper diagnosis and prognosis of COVID-19 lung infection.  相似文献   

12.
COVID-19, being the virus of fear and anxiety, is one of the most recent and emergent of various respiratory disorders. It is similar to the MERS-COV and SARS-COV, the viruses that affected a large population of different countries in the year 2012 and 2002, respectively. Various standard models have been used for COVID-19 epidemic prediction but they suffered from low accuracy due to lesser data availability and a high level of uncertainty. The proposed approach used a machine learning-based time-series Facebook NeuralProphet model for prediction of the number of death as well as confirmed cases and compared it with Poisson Distribution, and Random Forest Model. The analysis upon dataset has been performed considering the time duration from January 1st 2020 to16th July 2021. The model has been developed to obtain the forecast values till September 2021. This study aimed to determine the pandemic prediction of COVID-19 in the second wave of coronavirus in India using the latest Time-Series model to observe and predict the coronavirus pandemic situation across the country. In India, the cases are rapidly increasing day-by-day since mid of Feb 2021. The prediction of death rate using the proposed model has a good ability to forecast the COVID-19 dataset essentially in the second wave. To empower the prediction for future validation, the proposed model works effectively.  相似文献   

13.
Coronavirus disease 2019 (COVID-19), caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become the worst pandemic disease of the current millennium. To address this crisis, therapeutic nanoparticles, including inorganic nanoparticles, lipid nanoparticles, polymeric nanoparticles, virus-like nanoparticles, and cell membrane-coated nanoparticles, have all offered compelling antiviral strategies. This article reviews these strategies in three categories: (1) nanoparticle-enabled detection of SARS-CoV-2, (2) nanoparticle-based treatment for COVID-19, and (3) nanoparticle vaccines against SARS-CoV-2. We discuss how nanoparticles are tailor-made to biointerface with the host and the virus in each category. For each nanoparticle design, we highlight its structure–function relationship that enables effective antiviral activity. Overall, nanoparticles bring numerous new opportunities to improve our response to the current COVID-19 pandemic and enhance our preparedness for future viral outbreaks.  相似文献   

14.
Today’s supply chain is becoming complex and fragile. Hence, supply chain managers need to create and unlock the value of the smart supply chain. A smart supply chain requires connectivity, visibility, and agility, and it needs be integrated and intelligent. The digital twin (DT) concept satisfies these requirements. Therefore, we propose creating a DT-driven supply chain (DTSC) as an innovative and integrated solution for the smart supply chain. We provide background information to explain the DT concept and to demonstrate the method for building a DTSC by using the DT concept. We discuss three research opportunities in building a DTSC, including supply chain modeling, real-time supply chain optimization, and data usage in supply chain collaboration. Finally, we highlight a motivating case from JD.COM, China’s largest retailer by revenue, in applying the DTSC platform to address supply chain network reconfiguration challenges during the COVID-19 pandemic.  相似文献   

15.
16.
Early diagnosis of a pandemic disease like COVID-19 can help deal with a dire situation and help radiologists and other experts manage human resources more effectively. In a recent pandemic, laboratories perform diagnostics manually, which requires a lot of time and expertise of the laboratorial technicians to yield accurate results. Moreover, the cost of kits is high, and well-equipped labs are needed to perform this test. Therefore, other means of diagnosis is highly desirable. Radiography is one of the existing methods that finds its use in the diagnosis of COVID-19. The radiography observes change in Computed Tomography (CT) chest images of patients, developing a deep learning-based method to extract graphical features which are used for automated diagnosis of the disease ahead of laboratory-based testing. The proposed work suggests an Artificial Intelligence (AI) based technique for rapid diagnosis of COVID-19 from given volumetric chest CT images of patients by extracting its visual features and then using these features in the deep learning module. The proposed convolutional neural network aims to classify the infectious and non-infectious SARS-COV2 subjects. The proposed network utilizes 746 chests scanned CT images of 349 images belonging to COVID-19 positive cases, while 397 belong to negative cases of COVID-19. Our experiment resulted in an accuracy of 98.4%, sensitivity of 98.5%, specificity of 98.3%, precision of 97.1%, and F1-score of 97.8%. The additional parameters of classification error, mean absolute error (MAE), root-mean-square error (RMSE), and Matthew’s correlation coefficient (MCC) are used to evaluate our proposed work. The obtained result shows the outstanding performance for the classification of infectious and non-infectious for COVID-19 cases.  相似文献   

17.
Novel Coronavirus-19 (COVID-19) is a newer type of coronavirus that has not been formally detected in humans. It is established that this disease often affects people of different age groups, particularly those with body disorders, blood pressure, diabetes, heart problems, or weakened immune systems. The epidemic of this infection has recently had a huge impact on people around the globe with rising mortality rates. Rising levels of mortality are attributed to their transmitting behavior through physical contact between humans. It is extremely necessary to monitor the transmission of the infection and also to anticipate the early stages of the disease in such a way that the appropriate timing of effective precautionary measures can be taken. The latest global coronavirus epidemic (COVID-19) has brought new challenges to the scientific community. Artificial Intelligence (AI)-motivated methodologies may be useful in predicting the conditions, consequences, and implications of such an outbreak. These forecasts may help to monitor and prevent the spread of these outbreaks. This article proposes a predictive framework incorporating Support Vector Machines (SVM) in the forecasting of a potential outbreak of COVID-19. The findings indicate that the suggested system outperforms cutting-edge approaches. The method could be used to predict the long-term spread of such an outbreak so that we can implement proactive measures in advance. The findings of the analyses indicate that the SVM forecasting framework outperformed the Neural Network methods in terms of accuracy and computational complexity. The proposed SVM system model exhibits 98.88% and 96.79% result in terms of accuracy during training and validation respectively.  相似文献   

18.
The aim of this research is to develop a mechanism to help medical practitioners predict and diagnose liver disease. Several systems have been proposed to help medical experts by diminishing error and increasing accuracy in diagnosing and predicting diseases. Among many existing methods, a few have considered the class imbalance issues of liver disorder datasets. As all the samples of liver disorder datasets are not useful, they do not contribute to learning about classifiers. A few samples might be redundant, which can increase the computational cost and affect the performance of the classifier. In this paper, a model has been proposed that combines noise filter, fuzzy sets, and boosting techniques (NFFBTs) for liver disease prediction. Firstly, the noise filter (NF) eliminates the outliers from the minority class and removes the outlier and redundant pair from the majority class. Secondly, the fuzzy set concept is applied to handle uncertainty in datasets. Thirdly, the AdaBoost boosting algorithm is trained with several learners viz, random forest (RF), support vector machine (SVM), logistic regression (LR), and naive Bayes (NB). The proposed NFFBT prediction system was applied to two datasets (i.e., ILPD and MPRLPD) and found that AdaBoost with RF yielded 90.65% and 98.95% accuracy and F1 scores of 92.09% and 99.24% over ILPD and MPRLPD datasets, respectively.  相似文献   

19.
This paper investigates how and why scientific video articles are communicated on Twitter. We use video articles published in the Journal of Visualized Experiments (JoVE) as our objects of study. We harvested tweets from October 2011 to November 2015 that contained one or more JoVE links. These tweets “citing” JoVE articles were analyzed both statistically and qualitatively. In this paper, we present the distribution of these tweets, with a closer look at the affordance use of Twitter including hashtags and mentions. In addition, we conducted a content analysis of the sampled Twitter accounts and tweets. We present the coding schemes and results of both Twitter user accounts and tweets text. In addition to the analysis of the coding results, we discuss the content of the tweets with particular attention to issues including the video/visual feature mentioned, the role of Twitter bots, and self-promotion of different stakeholders in the Twitter communication of JoVE video publications.  相似文献   

20.
Diabetes is one of the fastest-growing human diseases worldwide and poses a significant threat to the population’s longer lives. Early prediction of diabetes is crucial to taking precautionary steps to avoid or delay its onset. In this study, we proposed a Deep Dense Layer Neural Network (DDLNN) for diabetes prediction using a dataset with 768 instances and nine variables. We also applied a combination of classical machine learning (ML) algorithms and ensemble learning algorithms for the effective prediction of the disease. The classical ML algorithms used were Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), K-Nearest Neighbor (KNN), and Naïve Bayes (NB). We also constructed ensemble models such as bagging (Random Forest) and boosting like AdaBoost and Extreme Gradient Boosting (XGBoost) to evaluate the performance of prediction models. The proposed DDLNN model and ensemble learning models were trained and tested using hyperparameter tuning and K-Fold cross-validation to determine the best parameters for predicting the disease. The combined ML models used majority voting to select the best outcomes among the models. The efficacy of the proposed and other models was evaluated for effective diabetes prediction. The investigation concluded that the proposed model, after hyperparameter tuning, outperformed other learning models with an accuracy of 84.42%, a precision of 85.12%, a recall rate of 65.40%, and a specificity of 94.11%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号