首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
王迪  胡燕  高卫民  崔彦斌 《化工进展》2018,37(Z1):80-93
甲烷通过催化裂解反应可生成不含碳氧化合物(COx)的高纯氢和碳纳米材料(如碳纤维或碳纳米管等),对我国能源结构的调整及新材料的应用具有重要意义。与其他制氢工艺相比,甲烷催化裂解制氢工艺具有反应过程简单、产物清洁无污染、反应成本低等优点,因此该工艺具有重要的工业应用前景。本文重点阐述了催化剂(活性组分、催化剂载体、制备方法等)以及反应条件(催化剂还原条件、空速、反应温度等)对甲烷转化率、氢气产率和碳纳米材料(形貌和产量)的影响并对甲烷催化裂解反应机理、催化剂的失活与再生进行了概述。甲烷催化裂解反应目前仍处于实验室研究阶段,高效催化剂的研制以及流化床反应器的优化是该反应实现工业化应用的必要前提。  相似文献   

2.
随着国家对空气质量和环保要求的日渐提高,能高效制氢且不会产生污染空气造成温室效应的制氢工艺是实现碳减排的有效手段。甲烷催化分解是一种无氧裂解制氢技术,也是甲烷的低温裂解。甲烷裂解的最终产物是氢和固体碳,能有效减少碳氢化合物的产生。在过渡金属催化剂中,铁能在高温下保持稳定,促使甲烷裂解朝正反应方向进行,并会产生高附加值的薄壁碳纳米管。综述了甲烷裂解制氢的优点、铁基催化剂类型、反应器类型以及催化剂再生方法。  相似文献   

3.
张涛  张莉梅 《应用化工》2023,(8):2414-2418
介绍了甲烷制氢的主要技术途径及甲烷裂解制氢的反应机理,综述了甲烷裂解制氢不同催化剂的研究进展,包括单金属催化剂、多金属催化剂、碳质催化剂及不同载体的研究进展和发展趋势,简述了微波辐射、等离子体等甲烷催化裂解制氢新技术,并对甲烷催化裂解制氢研究方向进行了展望。  相似文献   

4.
金鑫 《应用化工》2011,40(8):1390-1392
采用浸渍法制备出3种MgO负载型过渡金属催化剂Fe/MgO、Co/MgO和N i/MgO,系统研究了甲烷在3种催化剂上于650,700和750℃下的裂解产物。结果表明,该3种催化剂均对甲烷裂解产氢并协同生长碳纳米管表现出较高活性。  相似文献   

5.
6.
流化床中甲烷催化裂解制备碳纳米管和氢气   总被引:5,自引:0,他引:5       下载免费PDF全文
刘唐  骞伟中  汪展文  魏飞  金涌  李俊诚  李永丹 《化工学报》2003,54(11):1614-1618
利用高活性的纳米Ni/Cu/Al2O3催化剂,在流化床反应器中研究了CH4裂解制备碳纳米管与H2的过程.CH4的转化率受流化床中的操作条件(温度、空速、气速及升温速率等)影响,碳纳米管的形貌也受过程的升温速率影响.在低升温速率下,能够同时得到较高的CH4转化率与形貌较好的碳纳米管.而且采用低的升温速率,可以在流化床(提供碳纳米管生长的自由空间)中连续生长碳纳米管,从而为将来的连续化大批量制备碳纳米管奠定了基础.  相似文献   

7.
以未经任何活化的内蒙古煤热解半焦为催化剂,研究了甲烷在微波加热条件下裂解制氢的反应规律和催化剂失活机理,探讨了半焦的表面结构特征和含氧官能团,分析了反应条件对甲烷催化裂解过程的影响.研究表明,在650℃~850℃之间,内蒙古褐煤半焦是一种很好的甲烷裂解制氢催化剂,在半焦制备温度为850℃,反应温度为850℃,空速为600mL/(h·g)的条件下,半焦催化甲烷裂解的初始转化率最高达到了61.75%;升高半焦制备温度和催化反应温度以及降低空速有利于提高甲烷的转化率;半焦催化活性降低的主要原因是表面结构特性的改变和含氧官能团的减少.  相似文献   

8.
靳立军  王焦飞  郑宇  胡浩权 《化工进展》2014,33(12):3125-3132
综述了炭催化甲烷裂解制氢的研究进展,重点阐述了具有不同孔结构特征的微孔炭、介孔炭和金属负载型炭催化剂在甲烷催化裂解制氢过程中的催化性能和影响规律。与微孔炭具有较高初始活性、较低稳定性相比,介孔炭或具有微孔/介孔结构的多级孔结构炭材料表现出更高的催化活性和寿命;将金属负载于炭材料制得的金属负载型催化剂可同时利用金属的高活性和炭材料相对较高的稳定性提高催化裂解甲烷性能。该文还对炭催化甲烷裂解机理进行概述,指出通过调控炭材料结构与组成、提高甲烷催化裂解性能和加强对炭催化甲烷裂解机理研究是今后发展的方向。  相似文献   

9.
刘少文  李永丹 《化工学报》2007,58(1):102-107
本文对流化床与固定床操作模式下的甲烷催化裂解制氢进行了比较研究。以纯甲烷为原料,分别考察了75Ni10Cu15Al和2Co1Al(原子比)催化剂上流化床与固定床操作模式下甲烷裂解制氢反应,结果表明流化床中的甲烷裂解反应速率较高。流化床操作的高表观速率主要是因为此模式下有效消除了外扩散,同时极大减少了内扩散阻力。同时不同温度下催化剂上生长的碳的TEM表征发现,金属颗粒尺寸随反应温度增加而增加,表明催化剂烧结是失活原因之一。但相同温度下固定床中催化剂金属颗粒尺寸明显大于流化床中的金属颗粒尺寸,且金属颗粒尺寸分布变宽,这说明流化床反应器有利于阻止金属颗粒的烧结。通过对甲烷裂解催化剂失活原因的分析发现流化床中催化剂颗粒的流态化有利于延长催化剂活性寿命。  相似文献   

10.
天然气催化制氢气的研究进展   总被引:1,自引:0,他引:1  
贾秀荣 《河南化工》2010,27(15):17-21
介绍国内外天然气制氢气技术的研究进展,分别对制氢的各种技术的方法、反应器的分类、所用催化剂的种类和性能,及目前解决催化剂积碳问题的方法等进行了详细的分析与讨论,提出天然气制氢技术的发展趋势。  相似文献   

11.
Catalytic decomposition of methane to pure hydrogen is a reaction of crucial importance for clean energy, if the problem of catalyst separation is solved and the carbon material has an increased commercial value. Unsupported nickel catalysts were synthesized by fusion method. The catalyst derived from nickel nitrate forms heterogeneous octahedral NiO, whereas the nickel hydroxide precursor results in catalyst containing sponge‐like NiO with folding lamellar structure of high porosity. The catalysts reactivity test was conducted with a fixed bed system at 1073 K. The catalyst subjected to hydrogen prereduction proved to be inactive. However, the methane prereduction was found to produce some coke to disperse the Ni particles and thus activated the catalyst. It was found that the higher concentration of methane resulted in a better methane conversion, but a higher deactivation rate. Carbon growth models were formulated to explain the formation of different types of carbon over Ni catalyst. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2907–2917, 2014  相似文献   

12.
刁金香  王惠 《应用化工》2013,42(9):1580-1582
以乙醇为碳源,采用浸渍法制备的担载量为Fe(5%)/C催化剂,利用化学气相沉积法协同制备碳纳米管和氢气,分析了裂解温度(500800℃)对于产生氢气产率和碳纳米管品质的影响。对于Fe(5%)/C催化裂解乙醇,最佳的反应温度为600℃,碳管的品质较好,氢气的产率最高为75%,生成的碳管为多壁碳纳米管。  相似文献   

13.
综述了国内外活性炭催化甲烷制氢的研究进展,主要集中在活性炭的纹理特征和表面化学性质对催化甲烷性能的影响,活性炭失活机理。煤作为活性炭前体和热源,由于研究时间不长,有许多进一步发展的空间,今后,可以将重点放在活性炭颗粒表面发生的化学反应机理以及甲烷分解和活性炭重新活化的机理等方面,从而优化活性炭的性质和操作参数,在活性炭催化甲烷制氢机理方面有所突破。  相似文献   

14.
刘树刚  邓文义  苏亚欣  沈恒根 《化工进展》2014,33(10):2619-2624
采用石英管固定床反应器,在微波加热条件下分别研究了气氛条件、甲烷分压以及铁粉对活性炭催化裂解甲烷的影响,并与传统电加热方式下的甲烷裂解特性进行了对比研究。结果表明,活性炭在不同气氛条件下表现出不同的升温特性,活性炭在氮气和氢气中的升温效果优于甲烷气氛。铁粉的掺入有利于提高活性炭反应温度,从而促进甲烷的转化率。对反应前后的活性炭进行了扫描电镜和比表面积分析,结果表明甲烷裂解后产生的大量积炭覆盖在活性炭表面,导致比表面积和孔容减小,平均孔径增大。进而推测活性炭活性降低的主要原因是由于积炭堵塞了活性炭微孔,减少了甲烷与活性炭微孔中的活性中心位的接触。  相似文献   

15.
氨分解制氢清洁高效,易于工业化使用,是一种极具前景的便携式制氢方法。镍作为氨分解非贵金属催化剂中性能最好、应用最广的催化剂,但仍存在低温活性低、易烧结等问题亟需改进。本文概括了氨分解反应的反应机理、动力学和热力学,综述了近年来国内外氨分解镍基催化剂的研究现状。研究者从镍金属活性中心调控出发进行研究,发现调节镍粒子尺寸、加入第二金属(Fe、Co、Mo等)、载体(Al2O3、SiO2、分子筛等)、助剂(碱土金属、稀土金属等)以及设计核壳结构进行调控,可提高镍金属的分散性和抗烧结能力。本文在以上基础上提出了镍基催化剂的改进措施和未来发展方向,以期为进一步设计出低温高活性镍基催化剂提供依据。  相似文献   

16.
The effects of hydrogen addition on the formation of hydrogen and carbon from methane decomposition over Ni/Al2O3 were studied. The results show that the added hydrogen in methane greatly affects the methane conversion, hydrogen output rate, and the properties of the carbon deposits on the surface of the Ni/Al2O3. The methane conversion and hydrogen output rate are significantly improved by the addition of hydrogen. As the flowrate of hydrogen increases from 0 to 25 mL/min, the initial activity of Ni/Al2O3 decreases sharply, while the stability increases first and then decreases due to the suppression of hydrogen to CH4 decomposition in the thermodynamics equilibrium. When the addition flowrate of the hydrogen is 15 mL/min, that is, 37.5% of the methane flowrate, a much higher methane conversion and the best stability of Ni/Al2O3 are obtained. The addition of a specific amount of hydrogen benefits the methane decomposition; however, the excessive hydrogen will suppress the decomposition. Most of the carbon that deposits on the surface of Ni/Al2O3 is filamentous carbon when hydrogen is added to the methane, however, encapsulated carbon is mainly produced when no hydrogen is added. In addition, the formation of encapsulated carbon, which deactivates the catalyst, is inhibited by the added hydrogen.  相似文献   

17.
半焦炭催化甲烷裂解及动力学特性   总被引:1,自引:0,他引:1  
在平推流反应器上,考察了非催化和半焦炭催化条件下甲烷裂解.利用气相色谱分析研究了甲烷裂解的规律.结果表明,半焦对甲烷裂解具有明显的催化作用,不同种类的炭催化剂表现出相似的催化活性.半焦炭催化剂条件下,甲烷裂解转化率同时受两方面的影响:一方面甲烷裂解产牛的积炭沉积在半焦表面及孔内,覆盖大部分的活性位,同时堵塞半焦内的孔道阻碍甲烷向半焦孔内扩散,使甲烷的裂解率降低;另一方面甲烷裂解生成的新物种反过来又对甲烷的裂解起催化作用,促进甲烷裂解.研究还表明,半焦中的灰分对甲烷裂解没有明显的作用,甲烷裂解主要受温度控制.采用简单的平推流模型对甲烷热分解动力学参数进行了计算,计算得到甲烷非催化和半焦催化裂解的表观活化能分别为154.02 kJ/mol和82.06 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号