共查询到19条相似文献,搜索用时 125 毫秒
1.
机场在军事和交通运输领域都有很重要的作用,对它的自动检测具有重大意义。本文提出了一种利用极化SAR(Polarimetric Synthetic Aperture Radar)图像检测机场跑道的方法。首先,利用SLIC(Simple linear Iterative Clustering)算法对极化SAR图像进行超像素分割;然后利用新三分量分解和极化散射熵对图像进行粗分类,再利用改进的K均值聚类结合差异度迭代的方法完成精细分类,最后利用跑道的散射特性和几何结构特征从分类结果中提取完整的机场区域。本文采用极化SAR数据进行实验检测,结果表明该方法能有效的检测出机场跑道,并且保持结构完整,边缘细节清晰,虚警率低。 相似文献
2.
3.
4.
大量实验证明抽取图像中稠密局部特征能够大大提高图像分类性能,目前的常用策略是基于空间均匀密集采样来实现稠密局部特征的抽取。该文提出一种新的基于区域非均匀空间采样的局部特征抽取方法。首先,用过分割技术对原始图像进行分割,从而得到图像的分割区域,并采用显著性检测技术估计每个过分割区域的重要性。然后,在保证不增加采样数的情况下,对重要的显著性区域的边界实行密集均匀采样,对区域内部根据区域大小和重要性实行随机采样。最后,采用词袋表示模型来实现图像分类。在两个广泛应用的数据库,8类体育运动(UIUC Sports)和256类自然图像(Caltech-256)数据库进行实验。实验结果证明,该文提出的采样策略进一步提高了基于稠密局部特征的图像分类性能。 相似文献
5.
6.
基于区域特征的自适应图像分割方法 总被引:6,自引:0,他引:6
本文提出一种以图像统计假设模型和系统条件熵相结合的自适应图像分割新方法,该方法能依据图像统计特征自适应地改变自组织特征映射网络的权值,解决卫传统图像分割方法所存在参数需要人工调整、无法获得最优解的问题。实验结果表明,本文方法对于复杂图像的分割具有很好的鲁棒性和有效性。 相似文献
7.
基于ROI与A适应Ostu相结合的图像分割算法 总被引:2,自引:0,他引:2
图像分割对于提取感兴趣区域的特征,提高现有图像分析系统的工作效率有着积极的作用。在结合当前静态图像中的ROI检测技术,利用建立后的ROI区域内图像代替整幅图像作为后续工作,并对Ostu阈值分割法进行自适应改进算法研究的基础上,研究了一种结合ROI生长技术与自适应Ostu阈值分割算法结合的新的分割方法。实验证明,该算法能够取得较理想的分割效果,有效地提取出感兴趣特征。 相似文献
8.
9.
给出了一种散射模型与Wishart分类相结合的极化合成孔径雷达(polarimetric synthetic aperture radar, PolSAR)图像非监督分类方法。首先利用去取向三分量散射模型进行粗分类,将像素划分为三种基本散射类型和混合散射类型;然后,在基本散射类型内根据占优散射机制的功率进行细分类,并根据Wishart距离对细分类的结果进行类别合并,合并到指定的类别数;最后对四种散射类型的像素分别重新进行Wishart迭代,从而实现极化SAR数据的非监督分类。利用美国AIRSAR机载系统采集的实测数据进行实验,并且同已有分类方法进行比较,结果表明本文方法改善了分类效果,且降低了体散射过估计。 相似文献
10.
11.
针对目前有关极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)的飞机目标检测算法虚警较多、自适应性较差的问题,给出一种复杂大场景中PolSAR图像多特征分类的飞机目标检测方法。该方法分为线下分类器训练和飞机目标检测两部分。使用Filter特征选择结合穷举法筛选出分类性能高的飞机极化特征训练SVM (Support Vector Machine, SVM)分类器;利用异化散射功率提取疑似飞机目标,进一步提取多个极化特征送入SVM分类获得检测结果。利用UAVSAR系统采集的多幅实测数据进行实验,并与现有的PolSAR图像飞机目标检测算法进行对比,结果表明该方法能够有效检测出飞机目标,并且虚警和漏警较少,方法自适应性有所提高。 相似文献
12.
该文提出一种基于判别式聚类框架的非监督极化SAR图像分类算法,利用判别式监督分类技术实现非监督聚类。为实现该算法,定义了一个结合softmax回归模型和马尔科夫随机场光滑性约束的能量函数。该模型中,像素类标和分类器均为需要优化的未知变量。该算法从基于${H / {\bar \alpha }}$目标极化分解和K-Wishart极化统计分布而产生的初始化类标开始,交替迭代优化分类器和类标的能量函数,从而实现对分类器和类标的求解。真实极化SAR数据上的实验结果证明了该算法的有效性和先进性。 相似文献
13.
14.
该文针对现有的谱聚类方法用于极化SAR图像分类时精度较低的问题,提出一种基于马尔科夫的判别谱聚类方法(MDSC),具有低秩和稀疏分解的特点。该方法首先恢复一个真实的低秩概率转移矩阵,将其作为标准马尔科夫谱聚类方法的输入,以减少噪声对分类结果的影响;然后在目标函数中引入判别信息,使极化SAR图像的数据信息能够得到更加充分地利用;最后采用增广拉格朗日乘子法来解决低秩和概率单纯形约束下的目标函数优化问题。在荷兰小农田、德国、西安和荷兰大农田4个不同数据集上的实验证明,该方法具有较好的准确率,且参数敏感性较低,表现出了良好的分类性能。 相似文献
15.
决策树模型在极化SAR数据分类中有着极大的应用价值,既能描述分类结果的极化散射机制,又能获得较好的分类精度。但在对散射机制相似的地物进行分类时,由于经典决策树模型的节点采用的是单个特征,分类精度不理想。因此,该文提出了节点采用2维特征的方法,即在特征集相同的前提下,每次取两个特征组成特征矢量用于节点,提高了经典决策树难以区分的地物的分类精度;并且利用分类结果的混淆矩阵准确定位了导致分类误差的节点,进而对节点进行有针对性的反馈调整,进一步提高了指定地物的分类精度。利用AIRSARFlevoland数据验证了该方法的有效性,并结合极化特征描述了Flevoland地区多种植被的极化散射机制。 相似文献
16.
该文针对极化SAR图像分类中只有少量标记样本的问题,提出了一种基于邻域最小生成树的半监督极化SAR图像分类方法。该方法针对极化SAR图像以像素为分类对象的特点,结合自训练方法的思想,利用极化SAR图像像素点的空间信息,提出了基于邻域最小生成树辅助学习的样本选择策略,增加自训练过程中被选择无标记样本的可靠性,扩充标记样本数量,训练更好的分类器。最终用训练好的分类器对极化SAR图像进行测试。对3组真实的极化SAR图像进行测试,实验结果表明,该方法在只有少量标记样本的情况下能获得满意的分类结果,且分类正确率明显优于传统的分类算法。 相似文献
17.
18.
针对相似度表达的困难性以及极化SAR图像中固有的相干斑噪声问题,该文提出了一种基于张量积(TPG)扩散的非监督极化SAR图像地物分类算法。张量积扩散一般用于光学图像的分割或检索,目前研究表明,其已可用于极化SAR(PolSAR)图像地物分类。基于张量积扩散可以稳健地度量数据点之间的测地线距离,因此能够更好地挖掘数据点之间内在的相似度信息。首先,将极化SAR图像进行分割,生成许多超像素;其次,基于超像素提取7种特征并生成一个特征向量,进而利用高斯核构建相似度矩阵;再次,基于已构建的相似度矩阵,利用张量积扩散沿着数据点的内在流形结构进行相似度的传播,实现全局的相似性度量,从而获得一个具有更强判别能力的相似度矩阵;最后,基于此相似度矩阵进行谱聚类以得到地物分类结果。该文在仿真和实测极化SAR图像上均进行了大量实验,并与4种经典算法进行对比,结果表明该方法可以有效地结合空间邻域相似度信息并取得更高的分类精度。 相似文献
19.
机场跑道由于目标尺寸大且成线条形,在连续图像中对其定位往往只能逐帧识别,计算复杂耗时,缺乏一种成熟的跑道跟踪方法.文中利用SUSAN算法检测跑道特征点,并对各个特征点使用分别跟踪的方法.将整个跑道进行快速跟踪定位,实验证明此方法时跑道跟踪取得了令人满意的结果. 相似文献