首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Aim) COVID-19 is an ongoing infectious disease. It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021. Traditional computer vision methods have achieved promising results on the automatic smart diagnosis. (Method) This study aims to propose a novel deep learning method that can obtain better performance. We use the pseudo-Zernike moment (PZM), derived from Zernike moment, as the extracted features. Two settings are introducing: (i) image plane over unit circle; and (ii) image plane inside the unit circle. Afterward, we use a deep-stacked sparse autoencoder (DSSAE) as the classifier. Besides, multiple-way data augmentation is chosen to overcome overfitting. The multiple-way data augmentation is based on Gaussian noise, salt-and-pepper noise, speckle noise, horizontal and vertical shear, rotation, Gamma correction, random translation and scaling. (Results) 10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06% ± 1.54%, a specificity of 92.56% ± 1.06%, a precision of 92.53% ± 1.03%, and an accuracy of 92.31% ± 1.08%. Its F1 score, MCC, and FMI arrive at 92.29% ±1.10%, 84.64% ± 2.15%, and 92.29% ± 1.10%, respectively. The AUC of our model is 0.9576. (Conclusion) We demonstrate “image plane over unit circle” can get better results than “image plane inside a unit circle.” Besides, this proposed PZM-DSSAE model is better than eight state-of-the-art approaches.  相似文献   

2.
The COVID-19 pandemic poses an additional serious public health threat due to little or no pre-existing human immunity, and developing a system to identify COVID-19 in its early stages will save millions of lives. This study applied support vector machine (SVM), k-nearest neighbor (K-NN) and deep learning convolutional neural network (CNN) algorithms to classify and detect COVID-19 using chest X-ray radiographs. To test the proposed system, chest X-ray radiographs and CT images were collected from different standard databases, which contained 95 normal images, 140 COVID-19 images and 10 SARS images. Two scenarios were considered to develop a system for predicting COVID-19. In the first scenario, the Gaussian filter was applied to remove noise from the chest X-ray radiograph images, and then the adaptive region growing technique was used to segment the region of interest from the chest X-ray radiographs. After segmentation, a hybrid feature extraction composed of 2D-DWT and gray level co-occurrence matrix was utilized to extract the features significant for detecting COVID-19. These features were processed using SVM and K-NN. In the second scenario, a CNN transfer model (ResNet 50) was used to detect COVID-19. The system was examined and evaluated through multiclass statistical analysis, and the empirical results of the analysis found significant values of 97.14%, 99.34%, 99.26%, 99.26% and 99.40% for accuracy, specificity, sensitivity, recall and AUC, respectively. Thus, the CNN model showed significant success; it achieved optimal accuracy, effectiveness and robustness for detecting COVID-19.  相似文献   

3.
The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019 (COVID-19). The usage of sophisticated artificial intelligence technology (AI) and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages. In this research, the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia, reported COVID-19 disease, and normal cases. The goal of the study is to analyze the achievements for medical image recognition of state-of-the-art neural networking architectures. Transfer Learning technique has been implemented in this work. Transfer learning is an ambitious task, but it results in impressive outcomes for identifying distinct patterns in tiny datasets of medical images. The findings indicate that deep learning with X-ray imagery could retrieve important biomarkers relevant for COVID-19 disease detection. Since all diagnostic measures show failure levels that pose questions, the scientific profession should determine the probability of integration of X-rays with the clinical treatment, utilizing the results. The proposed model achieved 96.73% accuracy outperforming the ResNet50 and traditional Resnet18 models. Based on our findings, the proposed system can help the specialist doctors in making verdicts for COVID-19 detection.  相似文献   

4.
Coronavirus disease (COVID-19) is an extremely infectious disease and possibly causes acute respiratory distress or in severe cases may lead to death. There has already been some research in dealing with coronavirus using machine learning algorithms, but few have presented a truly comprehensive view. In this research, we show how convolutional neural network (CNN) can be useful to detect COVID-19 using chest X-ray images. We leverage the CNN-based pre-trained models as feature extractors to substantiate transfer learning and add our own classifier in detecting COVID-19. In this regard, we evaluate performance of five different pre-trained models with fine-tuning the weights from some of the top layers. We also develop an ensemble model where the predictions from all chosen pre-trained models are combined to generate a single output. The models are evaluated through 5-fold cross validation using two publicly available data repositories containing healthy and infected (both COVID-19 and other pneumonia) chest X-ray images. We also leverage two different visualization techniques to observe how efficiently the models extract important features related to the detection of COVID- 19 patients. The models show high degree of accuracy, precision, and sensitivity. We believe that the models will aid medical professionals with improved and faster patient screening and pave a way to further COVID-19 research.  相似文献   

5.
COVID-19 is a global pandemic disease, which results from a dangerous coronavirus attack, and spreads aggressively through close contacts with infected people and artifacts. So far, there is not any prescribed line of treatment for COVID-19 patients. Measures to control the disease are very limited, partly due to the lack of knowledge about technologies which could be effectively used for early detection and control the disease. Early detection of positive cases is critical in preventing further spread, achieving the herd immunity, and saving lives. Unfortunately, so far we do not have effective toolkits to diagnose very early detection of the disease. Recent research findings have suggested that radiology images, such as X-rays, contain significant information to detect the presence of COVID-19 virus in early stages. However, to detect the presence of the disease in in very early stages from the X-ray images by the naked eye is not possible. Artificial Intelligence (AI) techniques, machine learning in particular, are known to be very helpful in accurately diagnosing many diseases from radiology images. This paper proposes an automatic technique to classify COVID-19 patients from their computerized tomography (CT) scan images. The technique is known as Advanced Inception based Recurrent Residual Convolution Neural Network (AIRRCNN), which uses machine learning techniques for classifying data. We focus on the Advanced Inception based Recurrent Residual Convolution Neural Network, because we do not find it being used in the literature. Also, we conduct principal component analysis, which is used for dimensional deduction. Experimental results of our method have demonstrated an accuracy of about 99%, which is regarded to be very efficient.  相似文献   

6.
Software defect prediction plays an important role in software quality assurance. However, the performance of the prediction model is susceptible to the irrelevant and redundant features. In addition, previous studies mostly regard software defect prediction as a single objective optimization problem, and multi-objective software defect prediction has not been thoroughly investigated. For the above two reasons, we propose the following solutions in this paper: (1) we leverage an advanced deep neural network—StackedContractive AutoEncoder (SCAE) to extract the robust deep semantic features from the original defect features, which has stronger discrimination capacity for different classes (defective or non-defective). (2) we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimizethe advanced neural network—Extreme learning machine (ELM) based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE. We mainly consider two objectives. One objective is to maximize the performance of ELM, which refers to the benefit of the SMONGE model. Another objective is to minimize the output weight normof ELM, which is related to the cost of the SMONGE model. We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE modelwithout SCAE across 20 open source software projects. The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics.  相似文献   

7.
简川霞  陈鑫  林浩  张韬  王华明 《包装工程》2021,42(15):275-283
目的 针对目前印刷套准识别方法依赖于经验人工设计特征提取的问题,提出一种不需要人工提取图像特征的卷积神经网络模型,实现印刷套准状态的识别.方法 采用图像增强技术实现不均衡训练集的均衡化,增加训练集图像的数量,提高模型的识别准确率.设计基于AlexNet网络结构的印刷套准识别模型的结构参数,分析批处理样本数量和基础学习率对模型性能的影响规律.结果 文中方法获得的总印刷套准识别准确率为0.9860,召回率为1.0000,分类准确率几何平均数为0.9869.结论 文中方法能自动提取图像特征,不依赖于人工设计的特征提取方法.在构造的数据集上,文中方法的分类性能优于实验中的支持向量机方法.  相似文献   

8.
The prompt spread of Coronavirus (COVID-19) subsequently adorns a big threat to the people around the globe. The evolving and the perpetually diagnosis of coronavirus has become a critical challenge for the healthcare sector. Drastically increase of COVID-19 has rendered the necessity to detect the people who are more likely to get infected. Lately, the testing kits for COVID-19 are not available to deal it with required proficiency, along with-it countries have been widely hit by the COVID-19 disruption. To keep in view the need of hour asks for an automatic diagnosis system for early detection of COVID-19. It would be a feather in the cap if the early diagnosis of COVID-19 could reveal that how it has been affecting the masses immensely. According to the apparent clinical research, it has unleashed that most of the COVID-19 cases are more likely to fall for a lung infection. The abrupt changes do require a solution so the technology is out there to pace up, Chest X-ray and Computer tomography (CT) scan images could significantly identify the preliminaries of COVID-19 like lungs infection. CT scan and X-ray images could flourish the cause of detecting at an early stage and it has proved to be helpful to radiologists and the medical practitioners. The unbearable circumstances compel us to flatten the curve of the sufferers so a need to develop is obvious, a quick and highly responsive automatic system based on Artificial Intelligence (AI) is always there to aid against the masses to be prone to COVID-19. The proposed Intelligent decision support system for COVID-19 empowered with deep learning (ID2S-COVID19-DL) study suggests Deep learning (DL) based Convolutional neural network (CNN) approaches for effective and accurate detection to the maximum extent it could be, detection of coronavirus is assisted by using X-ray and CT-scan images. The primary experimental results here have depicted the maximum accuracy for training and is around 98.11 percent and for validation it comes out to be approximately 95.5 percent while statistical parameters like sensitivity and specificity for training is 98.03 percent and 98.20 percent respectively, and for validation 94.38 percent and 97.06 percent respectively. The suggested Deep Learning-based CNN model unleashed here opts for a comparable performance with medical experts and it is helpful to enhance the working productivity of radiologists. It could take the curve down with the downright contribution of radiologists, rapid detection of COVID-19, and to overcome this current pandemic with the proven efficacy.  相似文献   

9.
This study is designed to develop Artificial Intelligence (AI) based analysis tool that could accurately detect COVID-19 lung infections based on portable chest x-rays (CXRs). The frontline physicians and radiologists suffer from grand challenges for COVID-19 pandemic due to the suboptimal image quality and the large volume of CXRs. In this study, AI-based analysis tools were developed that can precisely classify COVID-19 lung infection. Publicly available datasets of COVID-19 (N = 1525), non-COVID-19 normal (N = 1525), viral pneumonia (N = 1342) and bacterial pneumonia (N = 2521) from the Italian Society of Medical and Interventional Radiology (SIRM), Radiopaedia, The Cancer Imaging Archive (TCIA) and Kaggle repositories were taken. A multi-approach utilizing deep learning ResNet101 with and without hyperparameters optimization was employed. Additionally, the features extracted from the average pooling layer of ResNet101 were used as input to machine learning (ML) algorithms, which twice trained the learning algorithms. The ResNet101 with optimized parameters yielded improved performance to default parameters. The extracted features from ResNet101 are fed to the k-nearest neighbor (KNN) and support vector machine (SVM) yielded the highest 3-class classification performance of 99.86% and 99.46%, respectively. The results indicate that the proposed approach can be better utilized for improving the accuracy and diagnostic efficiency of CXRs. The proposed deep learning model has the potential to improve further the efficiency of the healthcare systems for proper diagnosis and prognosis of COVID-19 lung infection.  相似文献   

10.
With the development of artificial intelligence-related technologies such as deep learning, various organizations, including the government, are making various efforts to generate and manage big data for use in artificial intelligence. However, it is difficult to acquire big data due to various social problems and restrictions such as personal information leakage. There are many problems in introducing technology in fields that do not have enough training data necessary to apply deep learning technology. Therefore, this study proposes a mixed contour data augmentation technique, which is a data augmentation technique using contour images, to solve a problem caused by a lack of data. ResNet, a famous convolutional neural network (CNN) architecture, and CIFAR-10, a benchmark data set, are used for experimental performance evaluation to prove the superiority of the proposed method. And to prove that high performance improvement can be achieved even with a small training dataset, the ratio of the training dataset was divided into 70%, 50%, and 30% for comparative analysis. As a result of applying the mixed contour data augmentation technique, it was possible to achieve a classification accuracy improvement of up to 4.64% and high accuracy even with a small amount of data set. In addition, it is expected that the mixed contour data augmentation technique can be applied in various fields by proving the excellence of the proposed data augmentation technique using benchmark datasets.  相似文献   

11.
Existing segmentation and augmentation techniques on convolutional neural network (CNN) has produced remarkable progress in object detection. However, the nominal accuracy and performance might be downturned with the photometric variation of images that are directly ignored in the training process, along with the context of the individual CNN algorithm. In this paper, we investigate the effect of a photometric variation like brightness and sharpness on different CNN. We observe that random augmentation of images weakens the performance unless the augmentation combines the weak limits of photometric variation. Our approach has been justified by the experimental result obtained from the PASCAL VOC 2007 dataset, with object detection CNN algorithms such as YOLOv3 (You Only Look Once), Faster R-CNN (Region-based CNN), and SSD (Single Shot Multibox Detector). Each CNN model shows performance loss for varying sharpness and brightness, ranging between −80% to 80%. It was further shown that compared to random augmentation, the augmented dataset with weak photometric changes delivered high performance, but the photometric augmentation range differs for each model. Concurrently, we discuss some research questions that benefit the direction of the study. The results prove the importance of adaptive augmentation for individual CNN model, subjecting towards the robustness of object detection.  相似文献   

12.
In this study, we have proposed an artificial neural network (ANN) model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17, 2020. The proposed model is based on the existing data (training data) published in the Saudi Arabia Coronavirus disease (COVID-19) situation—Demographics. The Prey-Predator algorithm is employed for the training. Multilayer perceptron neural network (MLPNN) is used in this study. To improve the performance of MLPNN, we determined the parameters of MLPNN using the prey-predator algorithm (PPA). The proposed model is called the MLPNN–PPA. The performance of the proposed model has been analyzed by the root mean squared error (RMSE) function, and correlation coefficient (R). Furthermore, we tested the proposed model using other existing data recorded in Saudi Arabia (testing data). It is demonstrated that the MLPNN-PPA model has the highest performance in predicting the number of infected and recovering in Saudi Arabia. The results reveal that the number of infected persons will increase in the coming days and become a minimum of 9789. The number of recoveries will be 2000 to 4000 per day.  相似文献   

13.
Knee Osteoarthritis (KOA) is a degenerative knee joint disease caused by ‘wear and tear’ of ligaments between the femur and tibial bones. Clinically, KOA is classified into four grades ranging from 1 to 4 based on the degradation of the ligament in between these two bones and causes suffering from impaired movement. Identifying this space between bones through the anterior view of a knee X-ray image is solely subjective and challenging. Automatic classification of this process helps in the selection of suitable treatment processes and customized knee implants. In this research, a new automatic classification of KOA images based on unsupervised local center of mass (LCM) segmentation method and deep Siamese Convolutional Neural Network (CNN) is presented. First-order statistics and the GLCM matrix are used to extract KOA anatomical Features from segmented images. The network is trained on our clinical data with 75 iterations with automatic weight updates to improve its validation accuracy. The assessment performed on the LCM segmented KOA images shows that our network can efficiently detect knee osteoarthritis, achieving about 93.2% accuracy along with multi-class classification accuracy of 72.01% and quadratic weighted Kappa of 0.86.  相似文献   

14.
Ever since the COVID-19 pandemic started in Wuhan, China, much research work has been focusing on the clinical aspect of SARS-CoV-2. Researchers have been leveraging on various Artificial Intelligence techniques as an alternative to medical approach in understanding the virus. Limited studies have, however, reported on COVID-19 transmission pattern analysis, and using geography features for prediction of potential outbreak sites. Predicting the next most probable outbreak site is crucial, particularly for optimizing the planning of medical personnel and supply resources. To tackle the challenge, this work proposed distance-based similarity measures to predict the next most probable outbreak site together with its magnitude, when would the outbreak likely to happen and the duration of the outbreak. The work began with preprocessing of 1365 patient records from six districts in the most populated state named Selangor in Malaysia. The dataset was then aggregated with population density information and human elicited geography features that might promote the transmission of COVID-19. Empirical findings indicated that the proposed unified decision-making approach outperformed individual distance metric in predicting the total cases, next outbreak location, and the time interval between start dates of two similar sites. Such findings provided valuable insights for policymakers to perform Active Case Detection.  相似文献   

15.
Vehicle type classification is considered a central part of an intelligent traffic system. In recent years, deep learning had a vital role in object detection in many computer vision tasks. To learn high-level deep features and semantics, deep learning offers powerful tools to address problems in traditional architectures of handcrafted feature-extraction techniques. Unlike other algorithms using handcrated visual features, convolutional neural network is able to automatically learn good features of vehicle type classification. This study develops an optimized automatic surveillance and auditing system to detect and classify vehicles of different categories. Transfer learning is used to quickly learn the features by recording a small number of training images from vehicle frontal view images. The proposed system employs extensive data-augmentation techniques for effective training while avoiding the problem of data shortage. In order to capture rich and discriminative information of vehicles, the convolutional neural network is fine-tuned for the classification of vehicle types using the augmented data. The network extracts the feature maps from the entire dataset and generates a label for each object (vehicle) in an image, which can help in vehicle-type detection and classification. Experimental results on a public dataset and our own dataset demonstrated that the proposed method is quite effective in detection and classification of different types of vehicles. The experimental results show that the proposed model achieves 96.04% accuracy on vehicle type classification.  相似文献   

16.
This research article proposes an automatic frame work for detecting COVID -19 at the early stage using chest X-ray image. It is an undeniable fact that coronovirus is a serious disease but the early detection of the virus present in human bodies can save lives. In recent times, there are so many research solutions that have been presented for early detection, but there is still a lack in need of right and even rich technology for its early detection. The proposed deep learning model analysis the pixels of every image and adjudges the presence of virus. The classifier is designed in such a way so that, it automatically detects the virus present in lungs using chest image. This approach uses an image texture analysis technique called granulometric mathematical model. Selected features are heuristically processed for optimization using novel multi scaling deep learning called light weight residual–atrous spatial pyramid pooling (LightRES-ASPP-Unet) Unet model. The proposed deep LightRES-ASPP-Unet technique has a higher level of contracting solution by extracting major level of image features. Moreover, the corona virus has been detected using high resolution output. In the framework, atrous spatial pyramid pooling (ASPP) method is employed at its bottom level for incorporating the deep multi scale features in to the discriminative mode. The architectural working starts from the selecting the features from the image using granulometric mathematical model and the selected features are optimized using LightRES-ASPP-Unet. ASPP in the analysis of images has performed better than the existing Unet model. The proposed algorithm has achieved 99.6% of accuracy in detecting the virus at its early stage.  相似文献   

17.
Distributed Denial-of-Service (DDoS) has caused great damage to the network in the big data environment. Existing methods are characterized by low computational efficiency, high false alarm rate and high false alarm rate. In this paper, we propose a DDoS attack detection method based on network flow grayscale matrix feature via multiscale convolutional neural network (CNN). According to the different characteristics of the attack flow and the normal flow in the IP protocol, the seven-tuple is defined to describe the network flow characteristics and converted into a grayscale feature by binary. Based on the network flow grayscale matrix feature (GMF), the convolution kernel of different spatial scales is used to improve the accuracy of feature segmentation, global features and local features of the network flow are extracted. A DDoS attack classifier based on multi-scale convolution neural network is constructed. Experiments show that compared with correlation methods, this method can improve the robustness of the classifier, reduce the false alarm rate and the missing alarm rate.  相似文献   

18.
Currently, COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities. In this paper, a novel approach called the COVID-19 Quantum Neural Network (CQNN) for predicting the severity of COVID-19 in patients is proposed. It consists of two phases: In the first, the most distinct subset of features in a dataset is identified using a Quick Reduct Feature Selection (QRFS) method to improve its classification performance; and, in the second, machine learning is used to train the quantum neural network to classify the risk. It is found that patients’ serial blood counts (their numbers of lymphocytes from days 1 to 15 after admission to hospital) are associated with relapse rates and evaluations of COVID-19 infections. Accordingly, the severity of COVID-19 is classified in two categories, serious and non-serious. The experimental results indicate that the proposed CQNN’s prediction approach outperforms those of other classification algorithms and its high accuracy confirms its effectiveness.  相似文献   

19.
Calculating the semantic similarity of two sentences is an extremely challenging problem. We propose a solution based on convolutional neural networks (CNN) using semantic and syntactic features of sentences. The similarity score between two sentences is computed as follows. First, given a sentence, two matrices are constructed accordingly, which are called the syntax model input matrix and the semantic model input matrix; one records some syntax features, and the other records some semantic features. By experimenting with different arrangements of representing the syntactic and semantic features of the sentences in the matrices, we adopt the most effective way of constructing the matrices. Second, these two matrices are given to two neural networks, which are called the sentence model and the semantic model, respectively. The convolution process of the neural networks of the two models is carried out in multiple perspectives. The outputs of the two models are combined as a vector, which is the representation of the sentence. Third, given the representation vectors of two sentences, the similarity score of these representations is computed by a layer in the CNN. Experiment results show that our algorithm (SSCNN) surpasses the performance MPCPP, which noticeably the best recent work of using CNN for sentence similarity computation. Comparing with MPCNN, the convolution computation in SSCNN is considerably simpler. Based on the results of this work, we suggest that by further utilization of semantic and syntactic features, the performance of sentence similarity measurements has considerable potentials to be improved in the future.  相似文献   

20.
Skin cancer is one of the most severe diseases, and medical imaging is among the main tools for cancer diagnosis. The images provide information on the evolutionary stage, size, and location of tumor lesions. This paper focuses on the classification of skin lesion images considering a framework of four experiments to analyze the classification performance of Convolutional Neural Networks (CNNs) in distinguishing different skin lesions. The CNNs are based on transfer learning, taking advantage of ImageNet weights. Accordingly, in each experiment, different workflow stages are tested, including data augmentation and fine-tuning optimization. Three CNN models based on DenseNet-201, Inception-ResNet-V2, and Inception-V3 are proposed and compared using the HAM10000 dataset. The results obtained by the three models demonstrate accuracies of 98%, 97%, and 96%, respectively. Finally, the best model is tested on the ISIC 2019 dataset showing an accuracy of 93%. The proposed methodology using CNN represents a helpful tool to accurately diagnose skin cancer disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号