首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
为了强化电池热管理系统的散热能力,提高电池组的温度一致性,提出了反向分层风冷结构。基于电-热耦合生热模型及计算流体动力学,运用Fluent 15.0对风冷式电池热管理系统进行稳态数值仿真计算,并对所提出的散热结构进行了改进和优化。结果表明:使用反向分层风冷结构后各电池温度分布非常均匀,电池组整体最高温度及最大温差均有所下降,电池最大平均温差大幅度降低,电池组的温度场分布明显改善;增设扰流板后电池平均温度下降2.7℃,电池平均温差下降0.6℃,散热能力和温度一致性得到进一步提高,保证电池处于最佳工作温度范围内。  相似文献   

2.
研制了一种基于石墨烯与碳纳米管掺杂的复合相变材料(CPCM),对比分析了高放电倍率下(3C)不同环境温度时基于纯相变材料(PCM)与复合相变材料的锂离子动力电池组的热性能。实验结果表明,当环境温度分别为30℃、35℃和40℃时,由于石墨烯与碳纳米管的协同强化传热,与基于石蜡的电池组相比,电池组的最高温度分别下降了0.6℃、0.8℃和3.8℃。同时也发现,电池组中间位置电池温度高于周边电池,复合相变材料可以降低电池组的温差,尤其在环境温度较高时效果更为明显,如在环境温度为40℃时,填充材料为纯相变材料与复合相变材料时电池组的最大温差为6℃和3.5℃,与采用纯石蜡作冷却介质相比,填充复合相变材料可以使电池组最大温差下降41.7%。  相似文献   

3.
基于有限元分析方法,利用ANSYS软件,建立了10Ah立方形锂离子单体电池的热模型,并验证了模型的可行性,在此基础上建立了4×4锂离子电池组的热模型,并研究了其在过充条件下的热效应,分析了电池组的生热规律。结果表明:实验和模拟测得的单体电池表面中心的温度最大差值为2.4℃,验证了模型的可行性;锂离子单体电池的上表面温度明显高于其他表面,正极柱的温度高于负极柱;电池组的最高温度出现在电池组的几何中心;过充倍率越大,电池的温度升高速率越大,热不均衡性也越大;在相同的充电倍率下,相比于单体电池,电池组的温度升高速率更大,温差更大,热不均衡性更明显。  相似文献   

4.
田晟  肖佳将 《化工学报》2020,71(8):3510-3517
设计了锂离子电池热管-铝板嵌合式散热模组,增大热管与电池接触面积,强化换热。利用数值模拟和正交试验层次分析研究了影响模组散热性能各因素的具体影响权重,进行参数优选。结果表明:各试验方案下电池模组的温差均控制在3℃以内,均温性能优异;各因素对最高温度的影响程度依次为:热管冷凝段对流传热系数>热管冷凝段长度>铝板厚度>热管间距;结合层次分析确定最佳参数组合为热管冷凝段对流传热系数25 W·m-2·K-1、热管长度117 mm、铝板厚度2 mm、热管间距20 mm,该方案下电池以2C倍率放电至20%模组的最高温度为41.60℃,温差为1.35℃,满足散热要求。  相似文献   

5.
王建  郭航  叶芳  马重芳 《化工学报》2016,67(Z2):340-347
电动汽车锂离子电池温度过高会降低电池的放电效率,加速电池寿命的衰减。为了降低电池组温度,设计了热管内插于电池组的散热系统。以电动汽车实际行驶过程中的速度为依据,对不同放电电流下电池组的温度场分布进行了数值计算。结果表明:随着车速的提高,电池的放电电流、产热量急剧增加,当车速达到120 km·h-1时,放电电流高达143 A,电池放电截止时,电池组温度达到56℃;与自然对流冷却方式相比,热管冷却可以将电池组的平均温度降低4.6℃,电池组温差降低2.2℃;热管冷凝段长度的增长可以有效地降低电池组的温度,热管冷凝段长度为50 mm时,可以基本上满足电池组的散热需求。  相似文献   

6.
针对电动汽车电堆的热管理系统,建立了包含71节18650型锂离子电池的电池模组的微通道液冷热模型。该模型集总处理单电池热过程、电池生热基于实测结果,模型还特别考虑了电池间导热。基于该模型,模拟研究了放电倍率、冷却液入口流速、电池间接触面积以及电池与水冷管外壁接触面积对电池模组热行为的影响。模拟结果证实了该微通道液冷方案对动力电池模组热管理的有效性,并且发现:放电倍率的增加会使电池模组内单电池温度增加、模组内温度一致性变差;增大冷却液流量可以显著降低电池模组的温度,并改善其温度一致性;增大电池间接触面积可略微提升电池模组温度一致性,但对控制其最高温度作用有限;增大电池与液冷管外壁接触面积可显著降低电池模组内电池的最高温度,但会使其温度一致性变差。  相似文献   

7.
圆柱形锂离子电池模组微通道液冷热模型   总被引:3,自引:1,他引:2       下载免费PDF全文
赵春荣  曹文炅  董缇  蒋方明 《化工学报》2017,68(8):3232-3241
针对电动汽车电堆的热管理系统,建立了包含71节18650型锂离子电池的电池模组的微通道液冷热模型。该模型集总处理单电池热过程、电池生热基于实测结果,模型还特别考虑了电池间导热。基于该模型,模拟研究了放电倍率、冷却液入口流速、电池间接触面积以及电池与水冷管外壁接触面积对电池模组热行为的影响。模拟结果证实了该微通道液冷方案对动力电池模组热管理的有效性,并且发现:放电倍率的增加会使电池模组内单电池温度增加、模组内温度一致性变差;增大冷却液流量可以显著降低电池模组的温度,并改善其温度一致性;增大电池间接触面积可略微提升电池模组温度一致性,但对控制其最高温度作用有限;增大电池与液冷管外壁接触面积可显著降低电池模组内电池的最高温度,但会使其温度一致性变差。  相似文献   

8.
电动汽车锂离子电池温度过高会降低电池的放电效率,加速电池寿命的衰减。为了降低电池组温度,设计了热管内插于电池组的散热系统。以电动汽车实际行驶过程中的速度为依据,对不同放电电流下电池组的温度场分布进行了数值计算。结果表明:随着车速的提高,电池的放电电流、产热量急剧增加,当车速达到120km·h-1时,放电电流高达143A,电池放电截止时,电池组温度达到56℃;与自然对流冷却方式相比,热管冷却可以将电池组的平均温度降低4.6℃,电池组温差降低2.2℃;热管冷凝段长度的增长可以有效地降低电池组的温度,热管冷凝段长度为50mm时,可以基本上满足电池组的散热需求。  相似文献   

9.
王建  郭航  叶芳  马重芳 《化工学报》2018,69(4):1611-1619
温度对电动汽车锂离子电池有很重要的影响,电池温度过高时会降低电池的放电效率,加速电池寿命的衰减;冬季环境温度过低会降低电池的充电效率,缩短电动汽车的续航里程。为了使电池温度维持在合适的范围内,设计了动力电池复合相变材料热管理系统。将复合相变材料包裹在电池的外面,研究了相变材料对电池组温度场的影响。研究表明,相变潜热是最重要的物性参数,直接决定着电池组的最高温度。相变材料的热导率越大电池组的温度分布会越均匀。复合相变材料中石墨含量为25%时与纯石蜡相比可将电池组的最高温度降低2℃。在冬季,电池组有相变材料保温时,电池组的平均温度较无相变材料时高8℃。  相似文献   

10.
于申军  周永超  李贺  陈志奎 《化工学报》2010,61(11):2960-2964
研究了内阻差异对不同连接方式锂离子电池组安全性能的影响。测试结果表明,随着循环次数的增多,内阻差异电池的内阻值逐渐增大,壳体温度逐渐升高,放电容量不断衰减,进而导致阻值差异性不断增大,最终该电池发生失效。失效原因是内阻值不同所导致的该单电池发生的过充电现象。研究表明,内阻差异性是影响电池组安全性能的重要因素。与其他单电池相比,电池组中内阻差异越大的单电池的安全性能越差,连接方式中并联方式的安全性能要好于串联方式。  相似文献   

11.
靳鹏超  王世学 《化工进展》2014,33(10):2608-2612
针对一种使用相变材料(PCM)的新型电动汽车电池热管理系统,以计算流体动力学(CFD)为基础,研究该系统在正常工况和滥用工况下的冷却性能。以模块的最高温度和最大温差作为监控参数,通过对电池在高温环境及大电流放电等工况的模拟,发现与相同结构的空气冷却条件下的电池组相比,填充PCM能够保证电池组的最大温度不超过安全温度50℃,最大温差在5℃以内,可以明显改善电池组的温度场分布,使电池的容量得到充分的利用。此外,作为一个被动的冷却方式,PCM热管理系统不需要提供额外的附加功率,能够很好的满足电池的工作要求。  相似文献   

12.
尹少武  康鹏  韩嘉维  张朝  王立  童莉葛 《化工进展》2022,41(10):5518-5529
锂离子电池(lithium-ion battery,LIB)作为目前应用最广泛的储能电池之一,在电动汽车等行业发挥着至关重要的作用。电池的温度是影响LIB性能及安全性的重要因素,因此电池热管理(battery thermal management,BTM)至关重要。目前,利用相变材料(phase change material,PCM)进行相变冷却的热管理方式因其潜热高、不需消耗额外能量的优点已成为一种很有前途的方法。本文针对8节并联18650LIB的电池组性能进行了数值模拟及实验研究,探究了石蜡基复合相变材料(composite phase change material,CPCM)物性参数(包括热导率、熔点、相变潜热和材料厚度)对本文设计的电池组热管理性能的影响。结果表明,纯石蜡用于BTM可将3C放电下的电池最高温度降低28.0%,向石蜡中添加膨胀石墨后可使CPCM的热管理性能进一步提升,CPCM的热导率为2.0W/(m·K)时可将3C放电下的电池最高温度进一步降低5.42℃,继续增大CPCM热导率对热管理性能的提升较小。在综合考虑电池组的最高温度和温度均匀性的情况下,为得到在本文所设计的锂离子电池组最佳热管理性能,CPCM的热导率为2.0W/(m·K)、熔点应在36~38℃之间、相变潜热在212J/g左右、CPCM的厚度为4mm时最优。  相似文献   

13.
针对并行流道风冷式动力电池热管理系统,开发了一种导流板形状优化方法。采用控制点描述导流板的形状,结合数值模拟方法,以电池组温差极小化为优化目标,通过逐步调整控制点高度优化导流板形状。典型算例结果表明,采用提出的优化方法优化Z形风冷系统的进口导流板形状,可显著提高系统的散热性能。在不同冷却空气流量下,与原始系统相比,优化后系统在压降增加20%的情况下,电池组最高温度下降了3.7 K以上,最大温差减小了85%以上;与文献中的Z形流道优化系统相比,本研究的优化系统在保证系统压降基本不变的情况下,电池组温差减小了48%以上。  相似文献   

14.
This paper improves the thermal management system of lithium-ion battery through the high thermal conductivity flat heat pipe, and attempts to improve its performance. The adoption of flat heat pipes reduces the problem of poor heat dissipation in the direction of the coolant flow when the liquid cooling plate is used alone, and increases the heat conduction in the longitudinal direction of the battery. A three-dimensional simulation model is established to study the influence of the number and width of flat heat pipes on the maximum temperature rise and temperature difference of lithium-ion batteries at a certain discharge rate. It is found that after adding flat heat pipes, the maximum temperature rise and temperature difference of the battery decreased. The heat dissipation performance reaches the best when the flat heat pipe number is 11 and the maximum temperature difference can be controlled below 5°C at 3 C discharge rate with 11 flat heat pipes.  相似文献   

15.
锂离子电池放电过程中产生的热量无法及时消散会导致电池性能下降,设计合理的电池组散热结构是提升电池性能的关键一环。提出一种复合相变材料(CPCM)与空冷结合的电池组散热结构。利用伪二维电化学模型与三维散热模型相结合,将电池产热过程、电池与外界传热过程进行解析,探究了相变材料(PCM)厚度、CPCM中膨胀石墨(EG)的含量、空冷孔道数量及空冷气体流通方向对电池组散热性能的影响。结果表明,CPCM/空冷复合式散热结构的散热性能明显优于只用CPCM的电池组,且当PCM厚度等于电池半径、EG质量分数为20%时,电池组散热性能最佳。此外,双向通风管道设计可以更有效地降低电池温度。所得结论可为锂离子电池组的散热设计提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号