首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用共沉淀法合成LiNi0.5Mn1.5O4正极材料并对其进行退火处理,研究退火温度对材料电化学性能的影响。结果表明,退火温度会导致LiNi0.5Mn1.5O4正极材料中Mn3+含量的变化,进而影响材料的倍率性能和循环性能。其中,625 ℃退火8 h所制备的样品表现出最好的电化学性能,其0.2 C倍率首次放电容量为130.8 mA·h/g;1 C倍率首次放电容量为126.5 mA·h/g,50次循环后,容量保持率高达100.8%。  相似文献   

2.
机械力化学法制备LiNi0.5Mn1.5O4粉体的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
以Li2CO3,MnO2和Ni(OH)2·H2O为原料,采用机械力化学法制备锂离子层状结构正极材料LiNi0.5Mn1.5O4,采用X射线衍射,扫描电镜对其结构和形貌进行了表征.结果表明粉磨6 h可制备能在较低温度下发生固相反应的前驱体;前驱体于800℃煅烧6 h制备得到具有α-NaFeO2型层状有序结构的单相LiNi0.5Mn1.5O4.样品的首次放电容量为80 mAh·g-1.  相似文献   

3.
作为下一代锂离子电池或固态电池的候选正极材料,镍锰酸锂LiNi0.5Mn1.5O4正在吸引研究者的兴趣。本工作介绍了LiNi0.5Mn1.5O4的晶体结构、合成方法、电化学反应机制、材料的电学属性以及材料的优势,同时介绍了目前阻碍其产业化应用所存在的技术障碍:高温循环差、过程库伦效率低、金属溶出及相变、高电压下电解液分解、全电池产气等。针对存在的主要技术问题,深入讨论分析其内在的原因,并总结了若干材料层面的解决思路:微观形貌调控、新黏结剂匀浆策略、掺杂、包覆、高电压电解液匹配、制备过程控制、全电池应用研究等,另外还推测了可能的应用场景。LiNi0.5Mn1.5O4材料的商业化应用还有赖于电池层面的精细结构设计。综述目的是希望研究者更加关注LiNi0.5Mn1.5O4材料的产业化应用研究。  相似文献   

4.
王海龙 《广东化工》2013,(23):16-16,32
采用固相烧结法合成了Nb掺杂的LiNi0.5Mn1.5O4正极材料.通过XRD测试和充放电测试表征了材料的晶体结构和电化学性能.结果表明Nb掺杂容易产生LiNbO3杂质,并影响其放电能力,少量Nb掺杂获得的LiNi0.425Nb0.03Mn1.5O4展示出良好的大电流放电性能.  相似文献   

5.
5V锂离子电池正极材料LiNi0.5Mn1.5O4的研究进展   总被引:1,自引:0,他引:1  
唐致远  胡冉  王雷 《化工进展》2006,25(1):31-34
用3 d过渡金属元素部分取代锂离子正极材料的尖晶石型锂锰氧化物中的Mn,可使电极获得接近5V的电压平台,5V电池的好处是可以获得高的功率密度。本文综述了近年来制备5V正极材料LiNi0.5Mn1.5O4的方法以及通过这些方法制备出的材料的电化学性能的优劣性。  相似文献   

6.
随着新能源汽车产业的蓬勃发展,对高能量密度动力电池的需求日益迫切。开发高电压正极材料及其适配性电解液,成为下一代高能量密度动力电池的主要研究方向。镍锰酸锂(LiNi0.5Mn1.5O4)材料以其高电压(4.7 V,vs.Li/Li +)、高能量密度(达650 W·h/kg)、资源丰富且价格低廉而受到广泛关注。然而,镍锰酸锂材料在长期的充放电循环过程中,锰从电极材料中溶解,破坏了电极材料的结构,导致电池性能恶化。介绍了镍锰酸锂正极材料及其适配性电解液研究最新进展。指出离子掺杂、表面包覆、复合方法是改善镍锰酸锂电化学性能的有效途径。同时,通过引入成膜添加剂、改变锂盐的种类及浓度、调整主溶剂的种类及比例等方法,可以提高电解液的耐高压性能,提高镍锰酸锂电极与电解液的界面稳定性,也是提升镍锰酸锂电池性能的重要方法。最后提出,适用于锂离子电池的5 V高电压电解液的研发相对滞后,其是制约高电压电池体系应用的主要问题。  相似文献   

7.
孙健铭  谭毅  王凯  李鹏廷  薛冰 《精细化工》2020,37(3):500-506
制备了不同Al~(3+)掺杂量(x)的Li_(1+x)Al_xNi_(0.5)Mn_(1.5–x)O_4(LNMO)材料,通过XRD、SEM等对LNMO材料的结构进行了表征,通过CV测试、交流阻抗谱测试等方法测定了材料的电化学性能,讨论了Al~(3+)的掺杂量对材料结构和性能的影响。结果表明,适当的Al~(3+)掺杂会提高材料的结构稳定性及循环、倍率性能。当x=0.06时改性效果最好,在0.5和2.0 C下循环100次的容量保持率分别达到95.2%和90.0%。而且氧化还原峰的电势差较小,循环可逆性能最好。在该基础上,通过聚合物辅助法制备的样品由于{111}晶面族取向性更强,进一步提升了循环性能,0.5和2.0 C下循环100次容量保持率分别达到97.1%和93.0%。  相似文献   

8.
王海龙 《河南化工》2013,(16):40-42
采用聚合物辅助方法合成了纳米级的LiNi0.5Mn1.5O4颗粒.通过XRD测试,扫描电镜观察和充放电测试表征了材料的晶体结构、形貌和电化学性能.结果表明烧结温度对于颗粒的尺寸形貌和结晶度具有重要的影响作用,并影响其放电能力,800℃烧结获得的LiNi0.5Mn15O4具有更好的结晶性并且展示出更好的电性能.  相似文献   

9.
高键能异质原子的高效掺杂是稳定高电压LiNi0.5Co0.2Mn0.3O2(NCM)三元正极材料并提升其电化学性能的有效策略。借助含硼前体在二次颗粒表面富集及随后高温煅烧强化B3+体相扩散的策略,构建了硼离子高效掺杂NCM正极材料(NCM-B)。引入B—O键(键能:809 kJ·mol-1)抑制了电化学反应过程中晶格氧析出,进而稳定材料的氧离子框架;此外,表面残余的高锂离子导体Li2O-B2O3包覆层可以在一定程度上稳定电极-电解液界面。与改性前NCM相比,改性后的NCM-B正极材料在3.0~4.5 V电压区间的可逆比电容量可以达到193.7 mA·h·g-1,在10 C大功率下,比电容量仍保持120 mA·h·g-1(NCM仅为78.2 mA·h·g-1)。1 C下连续循环100圈后,比电容量保持率从73%提升到90%。表面富集和扩散强化的思想也有望实现其他正极材料的高效掺杂。  相似文献   

10.
周兰  李旺  廖文俊 《无机盐工业》2021,53(11):17-24
尖晶石LiNi0.5Mn1.5O4正极材料因理论比容量和理论比能量高、工作电压高、资源丰富且价格低廉等优点而备受关注,但该材料因为高电压下电解液的分解及界面副反应导致循环性能和倍率性能不佳,制约着材料的推广应用。结合近几年的研究报道,介绍了LiNi0.5Mn1.5O4正极材料的结构及脱嵌机制、表/界面化学、改性方法,着重介绍了LiNi0.5Mn1.5O4材料的表面性质及不同组分之间的界面反应机制及对正极材料电化学性能的影响,指出LiNi0.5Mn1.5O4材料的晶面取向、颗粒形貌、表面元素分布、包覆及离子掺杂是改善镍锰酸锂材料电化学性能的有效途径。同时,通过溶剂替代、成膜添加剂的添加、改变锂盐的种类及浓度等方式,开发与之匹配的耐高压电解液也是提升镍锰酸锂电池性能的重要方法。最后,对LiNi0.5Mn1.5O4正极材料表面改性和电解液界面构筑方面进行了总结和展望,旨在为提升该材料性能的相关研究提供参考。  相似文献   

11.
本文用溶胶凝胶法制备了LiNi0.5Mn1.5O4正极材料,然后用ZnF2对其进行表面包覆。XRD测试表明,包覆处理没有影响材料的晶体结构,EDS、SEM和TEM测试表明,2wt%ZnF2在LiNi0.5Mn1.5O4表面形成了约7 nm厚的均匀包覆层。对未包覆、1wt%、2wt%、3wt%包覆后的材料进行电化学性能测试对比,发现包覆后都能减弱电解液与基体间的相互作用,较大地稳定电极表面,提高了材料的电化学性能。其中,2wt%ZnF2包覆样品表现出最佳的电化学性能,0.2 C倍率下循环200圈后,其放电比容量维持在109 mAh/g,容量保持率为79.7%;在10 C时,放电比容量依然高达102.1 mAh/g;5 C高倍率下循环500圈后,放电比容量维持在94.2 mAh/g,容量保持率为85.6%。  相似文献   

12.
At present, metal ions from spent lithium-ion batteries are mostly recovered by the acid leaching procedure, which unavoidably introduces potential pollutants to the environment. Therefore, it is necessary to develop more direct and effective green recycling methods. In this research, a method for the direct regeneration of anode materials is reported, which includes the particles size reduction of recovered raw materials by jet milling and ball milling, followed by calcination at high temperature after lithium supplementation. The regenerated LiNi0.5Co0.2Mn0.3O2 single-crystal cathode material possessed a relatively ideal layered structure and a complete surface morphology when the lithium content was n(Ni + Co + Mn):n(Li) = 1:1.10 at a sintering temperature of 920 ℃, and a sintering time of 12 h. The first discharge specific capacity was 154.87 mA·h·g-1 between 2.75 V and 4.2 V, with a capacity retention rate of 90% after 100 cycles.  相似文献   

13.
以共沉淀法制备出的球形Ni0.5Co0.3Mn0.2(OH)2为前驱体,以碳酸锂为锂源,通过高温固相法合成了球形LiNi0.5Co0.3Mn0.2O2正极材料。通过热重分析(TGA/DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、粒度分布、以及电化学性能的测试考查了不同烧结温度对LiNi0.5Co0.3Mn0.2O2的物理性能及电化学性能的影响。结果表明,900℃下烧结得到的LiNi0.5Co0.3Mn0.2O2晶体结构完整、球形形貌规则、粒度分布均匀,并表现出了优异的电化学性能,0.2 C首次放电容量达到了166.7 mA.h/g;1 C首次放电容量为151.6 mA.h/g,20次循环后,容量保持率高达97.9%。  相似文献   

14.
王海龙 《山东化工》2013,(11):15-16,19
采用固相烧结法成功合成了Rh掺杂的LiNi0.5Mnl.504正极材料。通过XRD测试和充放电测试表征了材料的晶体结构和电化学性能。结果表明Rh掺杂可以有效提高LiNi05Mnl504在大电流密度(5c和10c)条件下的放电电量,并可以显著改善IOC充放电条件下的循环性能。  相似文献   

15.
前驱体对锂离子电池正极材料LiMn2O4结构和性能有重要影响。综述了常见的前驱体特点及生产工艺,指出二氧化锰仍然是目前用量最大的前驱体,适当的体相掺杂是改善其性能的有效途径;用球形四氧化三锰制备高性能LiMn2O4有广阔的应用前景,改善生产工艺、降低成本必将提升球形四氧化三锰在锂离子电池领域的竞争力。  相似文献   

16.
以简单的球磨-干燥-煅烧法,制备了具有稳定α-NaFeO2型层状结构(R-3m空间群)的LiNi0.5Co0.2Mn0.3O2 型的三元正极材料。通过X射线衍射分析、傅里叶红外光谱、扫描电子显微镜、充放电循环、循环伏安、交流阻抗谱等手段测试了样品的理化性能。研究表明:球磨浆料的陈化温度对样品性能有明显的影响。在0.1C、1C、2C、3C、5C、6C、8C和10C倍率电流和连续充放电下,经过50 ℃陈化浆料制备的亚微米样品的放电容量分别为172.3、161.4、151.5、145.2、136.9、133.2、126.3、121.4 mA·h/g,表现出较好的大倍率电流放电性能。随着循环次数的增加,该样品的锂离子扩散系数和电荷传递阻抗均发生变化。该样品的未循环、充放电循环1次及循环40次样品的锂离子扩散速率分别为1.45×10-16、6.60×10-16、7.92×10-15 cm/s。  相似文献   

17.
LiNi0.5Mn1.5O4(LNMO)是一种有前景的下一代高能密度锂离子电池正极材料,但其中的锰离子溶解严重、容量衰减严重,阻碍了其应用。本工作通过水热-煅烧合成了LiNi0.4Co0.1Mn1.5O4(LNCMO)三元尖晶石型高电压复合材料,探究了煅烧温度和升温速率等制备条件对样品形貌和结构的影响。本文合成的LNCMO样品微观形貌呈类菱形结构,物相纯净,比表面积为3.72m2/g,平均孔径为11.60nm,放电电压接近4.75V,在20mA/g下初始放电比容量达143.90mAh/g,和LNCMO的理论比容量(146.71mAh/g)的比值达98%。根据XRD和XPS等表征分析可知,复合材料中的Mn4+比例较大,Mn3+较少,且合适的煅烧温度和升温速率避免了Li x Ni1-x O杂质相的生成,因此本文制备的材料相比LNMO材料结构稳定性增强,电荷转移阻力低,电性能尤其是比容量大幅提升。本文还对比了循环前后的样品,发现其物相基本一致,但高电流密度下形貌结构坍塌严重,影响了循环稳定性。本研究提供了一种有效制备三元高电压材料的策略。  相似文献   

18.
Spinel lithium manganese oxide, LiMn2O4 coated with V2O5 layer (labeled as LMO-VO) has been developed and its electrochemical performances as cathode material for lithium-ion batteries has been evaluated at high cut-off voltage (>4.5 V vs. Li/Li+) and compared with pristine LiMn2O4 (labeled as LMO). The crystal structure investigations show that LMO-VO has longer Li–O bond length for fast Li-ion diffusion kinetic process. The scanning electron microscopy results indicate that LMO-VO has finer particles and the V2O5 layer has been successfully coated on the LMO surface uniformly. The highly conductive V2O5 coating layer enhances the ionic conductivity of the LMO cathode, as evidenced by the significant drop of Rct value from the Nyquist plot. Under high operating voltage, the cell employed with coated LMO shows exceptional cycling performance in capacity retention and potential difference. After 300 cycles, the capacity retention per cycle has been boosted from 99.90% to 99.94% by adopting the V2O5 coating layer. In addition, surface coating with V2O5 stabilizes the potential difference at very minimal change for a longer period. This convincingly proves that the V2O5 coating layer not only protects against hydrofluoric acid (HF) attack and greatly restrains the increase of cell polarization at high voltage.  相似文献   

19.
采用高温固相法合成锂离子电池富镍三元材料LiNi0.8Co0.1Mn0.1O2,对其工艺条件进行优化,对产物进行X射线衍射(XRD(,扫描电镜(SEM(以及电化学性能分析。结果表明:在氧气气氛下,锂与金属元素摩尔比为1.05:1、烧结时间15 h、烧结温度750℃为最佳合成工艺条件。按最佳工艺合成的样品在1C首次放电容量高达174.9 mA·h·g-1,50次循环后比容量为158.5 mA·h·g-1,容量保持率为90.62%,表现出良好的循环稳定性。XRD和SEM表征表明,在氧气气氛下烧结的样品有良好的层状结构,阳离子混排程度小,具有较好的类球形,粒径均匀分布在10~20 μm。循环伏安(CV(和电化学阻抗(EIS(结果表明,工艺条件的优化有助于提高正极材料的电化学性能。  相似文献   

20.
Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g-1 at room temperature and 138 mAh g-1 and 50°C, along with a superior cyclability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号