首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
为了研究氨气/甲烷掺混燃气在贫预混旋转湍流状态下的火焰稳定性及NO的排放特性,设计建造了一个可视化的旋转湍流燃烧装置,开展了一系列的实验测量研究。研究表明:随着当量比增大,氨气火焰稳定燃烧的范围有所扩大,但当氨气掺混比大于0.60时火焰出现上下振荡现象,继续增加将导致火焰吹熄;NO的排放水平随当量比增加而提高;但在相同的当量比下,NO的排放随氨气掺混比的增加先升高再下降。此外,分别采用化学反应器网络(CRN)方法和一维层流预混火焰计算方法,对相应的火焰状态进行了数值计算分析,虽然计算结果与实验结果误差较大,但其预测的NO排放特性随氨气掺混比、当量比的变化趋势是一致的,对三者之间误差的来源进行了分析。  相似文献   

2.
为了研究氨气/甲烷掺混燃气在贫预混旋转湍流状态下的火焰稳定性及NO的排放特性,设计建造了一个可视化的旋转湍流燃烧装置,开展了一系列的实验测量研究。研究表明:随着当量比增大,氨气火焰稳定燃烧的范围有所扩大,但当氨气掺混比大于0.60时火焰出现上下振荡现象,继续增加将导致火焰吹熄;NO的排放水平随当量比增加而提高;但在相同的当量比下,NO的排放随氨气掺混比的增加先升高再下降。此外,分别采用化学反应器网络(CRN)方法和一维层流预混火焰计算方法,对相应的火焰状态进行了数值计算分析,虽然计算结果与实验结果误差较大,但其预测的NO排放特性随氨气掺混比、当量比的变化趋势是一致的,对三者之间误差的来源进行了分析。  相似文献   

3.
自由堆积多孔介质内预混燃烧火焰传播   总被引:1,自引:2,他引:1       下载免费PDF全文
为了解多孔介质内预混燃烧火焰前沿的传播特性,对不同化学当量比(=0.7~1.0)的甲烷/空气预混气体在不同孔隙率(ε为0.37和0.42)的多孔介质内的火焰前沿传播特性进行了研究,多孔介质采用3 mm和6 mm直径的Al2O3小球在陶瓷管中堆积而成。结果表明,预混气体在多孔介质中能够形成低速燃烧的稳定燃烧波;其火焰传播速度随化学当量比增大而加快,最大的火焰传播速度为3.52×10-3 cm·s-1;多孔介质的结构对火焰前沿传播速度影响很大,即使在孔隙率差别不大的情况下,大球堆积而成的多孔介质比小球具有更高的火焰前沿传播速度。  相似文献   

4.
化石燃料的燃烧是当今社会主要的能源供给形式,但随着化石能源的消耗殆尽,发展新型替代燃料已刻不容缓。正十二烷(n-C12H26)是航空煤油的重要组成成分之一,也是多种航空煤油替代燃料的重要组成。本工作采用CHEMKIN/PREMIX数值模拟研究了正十二烷/空气火焰的层流燃烧特性,为发展航空煤油替代燃料提供一定的理论参考。实验的初始温度设置为400,403,423和470 K,初始压力设置为0.1,0.2,0.3,0.5,1.0 MPa,当量比设置为0.6~1.6。本研究主要聚焦火焰的传播燃烧特性、温度敏感性分析和中间自由基的分布情况,探究了正十二烷/空气火焰的层流燃烧速度、绝热火焰温度、净热释放率和中间自由基生成速率随初始温度和压力的变化规律。结果表明,层流燃烧速度的模拟值对其他研究者的实验值预测良好,与其他模型的预测趋势保持一致。绝热火焰温度在化学计量比附近达到峰值。温度敏感性分析表明,与其他碳氢燃料相似,在正十二烷氧化过程中引起火焰温度升高促进放热的最敏感反应为R1 ■。通过对中间自由基的生成速率及摩尔分数分布规律的研究,验证了正十二烷燃烧...  相似文献   

5.
利用PREMIX程序对预混层流正庚烷/甲醇一维自由传播火焰进行了数值模拟。计算了不同初始压力、初始温度以及不同甲醇掺混比例下正庚烷/甲醇二元燃料的层流火焰速率。研究表明:正庚烷/甲醇二元燃料的层流火焰速率随初始压力的升高而减小,随初始温度的升高而增大,随甲醇掺混比例的升高而增大,但增幅较小。研究对关键组分进行进一步分析,从化学反应动力学角度揭示了层流火焰速率变化的原因。  相似文献   

6.
航空煤油实际燃烧过程中往往存在高化学当量比(Φ)的贫氧条件,导致航空煤油着火困难、燃烧效率较低。本文以航空煤油一元替代燃料正癸烷为燃料,实验研究了贫氧条件下(Φ=2~4)微圆管内Pt/ZSM-5催化剂和石英砂填充床中正癸烷的贫氧催化/无催化燃烧特性,分析了当量比(Φ=2~4)、温度(300~450℃)和催化剂对正癸烷转化率、燃烧效率以及气相产物分布特性的影响。结果表明:Pt/ZSM-5催化剂对正癸烷燃烧反应的促进作用明显,存在温度激增现象,当量比Φ从2增大到3.5时,动态着火点从196℃上升到271℃,而无催化则没有明显的着火点。贫氧催化条件下正癸烷的转化率始终低于无催化条件,但燃烧效率明显高于无催化。正癸烷催化燃烧的主要气相产物为CO2,无催化的主要气相产物则为CO和烯烃。  相似文献   

7.
为了明确纳米铝粉从低浓度到高浓度变化对液体碳氢燃料着火燃烧特性的影响,采用液滴悬挂法研究了不同温度下(700~800℃)乙醇液滴和添加不同浓度(2.5wt%, 10wt%, 15wt%和20wt%)纳米铝粉的铝/乙醇基纳米浆体燃料液滴的着火燃烧特性。利用高速摄影系统捕捉了液滴整个燃烧过程,分析了其液滴寿命。通过热电偶对液滴附近气相温度的测量,获得了其着火性能参数。结果表明,添加纳米铝粉可以改善乙醇液滴的着火性能。不同铝粉浓度改善效果不同,低浓度时效果较好,着火延迟时间显著缩短,点火温度明显降低。随温度升高,乙醇及添加纳米铝粉的铝/乙醇基纳米浆体燃料液滴着火延迟时间及着火温度均明显降低。纳米铝粉(S2)对乙醇(S1)着火延迟时间和液滴寿命的降幅在750℃最大,其降幅分别达42.20%和18.43%。纳米铝粉(S3)着火温度降低,其最大降低幅度也出现在750℃,相对于乙醇(S1)降低幅度达28.57%。一定铝粉浓度范围内,液滴微爆炸程度和微爆炸时长随铝粉浓度升高而增大,但铝粉浓度超过10wt%后趋势变得平稳。  相似文献   

8.
采用液滴悬挂法研究了正庚烷液滴、油酸/正庚烷混合燃料液滴、含20wt%纳米铝粉的铝–油酸/正庚烷基纳米浆体燃料液滴在不同温度下(600~800℃)的着火燃烧特性。用高速摄像机观测液滴进入管式电阻炉后的着火燃烧过程,使用热电偶记录液滴周围的气相温度变化,同时通过对应的温度曲线计算液滴的着火延迟时间。结果表明,纳米铝粉和油酸的添加均能降低正庚烷液滴的着火延迟时间。随温度升高,正庚烷、油酸/正庚烷混合燃料、铝–油酸/正庚烷基纳米浆体燃料液滴的着火延迟时间显著降低,但变化趋势逐渐趋于平缓。铝–油酸/正庚烷基纳米浆体燃料液滴的着火延迟时间与环境温度满足阿累尼乌斯方程。与纯正庚烷、油酸/正庚烷混合液滴的燃烧过程相比,铝–油酸/正庚烷基浆体燃料液滴的燃烧过程有显著差异,其燃烧经历3个阶段:正庚烷稳定燃烧阶段、正庚烷微爆炸阶段和表面活性剂微爆炸阶段。铝–油酸/正庚烷基浆体燃料液滴燃烧时间延长,火焰熄灭后又复燃,且燃烧过程中发生剧烈的火焰形变和铝颗粒溅射现象,大部分铝以团聚体形式在第三阶段完成氧化还原反应。  相似文献   

9.
热解温度对生物质和煤成焦特性的影响   总被引:1,自引:0,他引:1  
以麦秆、橡树木屑和华亭烟煤为原料,研究热解产物的理化特性并讨论燃料种类和热解温度对其的影响.采用BET、SEM-EDS、XRD和TGA对其进行分析表征.结果表明:在600~1 000 ℃的温度范围内,煤焦的比表面积和孔隙容积随热解温度增加而增大,而木屑焦的变化不明显,麦秆焦在800 ℃时比表面积和孔隙容积最大,更高温度则发生烧结;焦样中C元素含量随热解温度升高而增加,而H元素和O元素随之降低,麦秆焦的着火特性优于木屑焦和煤焦.木屑焦和煤焦的着火特性随热解温度升高而变差,而麦秆焦在800 ℃具有最佳的着火特性.  相似文献   

10.
乙醇在微尺度单电极燃烧器内的雾化与燃烧   总被引:3,自引:2,他引:1       下载免费PDF全文
甘云华  佟洋  罗智斌 《化工学报》2015,66(11):4597-4602
采用荷电喷雾燃烧技术是促进微尺度下液体燃料稳定燃烧的重要方法。使用乙醇为燃料,在新型结构的喷嘴内径为0.8 mm微尺度单电极燃烧器内,进行了荷电雾化与燃烧特性的实验研究。结果表明:荷电雾化会随喷嘴电压升高而出现4种模式,对应的荷质比在脉动模式下最低,到达锥-射流模式后出现跃升,在锥-射流模式下最为稳定。荷电雾化后的乙醇在燃烧器网格处稳定燃烧,火焰温度随着当量比增大先上升后下降。火焰温度在当量比=1.0时达到最高值,且随电压增大而上升。锥-射流模式下,当量比=1.0时,燃烧效率可达89%,燃料转换效率可达90%。稳定的雾化模式以及合适的当量比,对燃烧效果具有较大的改善作用。  相似文献   

11.
The partial oxidation of hydrocarbons is an important technical route to produce acetylene for chemical industry.The partial oxidation reactor is the key to high acetylene yields.This work is an experimental and numerical study on the use of a methane flame to produce acetylene.A lab scale partial oxidation reactor was used to produce ultra fuel-rich premixed jet flames.The axial temperature and species concentration profiles were measured for different equivalence ratios and preheating temperatures,and these were compared to numerical results from Computational Fluid Dynamics(CFD)simulations that used the Reynolds Averaged Navier-Stokes Probability Density Function(RANS-PDF)approach coupled with detailed chemical mechanisms.The Leeds 1.5,GRI 3.0 and San Diego mechanisms were used to investigate the effect of the detailed chemical mechanisms.The effects of equivalence ratio and preheating temperature on acetylene production were experimentally and numerically studied.The experimental validations indicated that the present numerical simulation provided reliable prediction on the partial oxidation of methane.Using this simulation method the optimal equivalence ratio for acetylene production was determined to be 3.6.Increasing preheating temperature improved acetylene production and shortened greatly the ignition delay time.So the increase of preheating temperature had to be limited to avoid uncontrolled ignition in the mixing chamber and the pyrolysis of methane in the preheater.  相似文献   

12.
The effects of the strain rate, equivalence ratio, and particle diameter on the combustion of a mixture of aluminum microparticles with air under fuel-lean conditions are studied in the counterflow configuration with an approximate analytical perturbation method. The flame structure is assumed to consist of three zones: preheating, flame, and post-flame zones. Reasonable agreement between the current results and experimental data is obtained in terms of the flame temperature. The dimensionless ignition and ultimate flame temperatures, place of the flame starting point, and flame thickness are obtained as functions of the strain rate for different particle diameters and equivalent ratios. The results indicate that the ignition and ultimate flame temperatures and also the flame thickness decrease with increasing strain rate. With a decrease in the strain rate, the length of the preheating zone increases. With increasing particle diameter, the flame thickness increases, whereas the ignition and ultimate flame temperatures decrease. An increase in the equivalence ratio causes an increase in the ultimate flame temperature and reduction of the preheating zone and flame thickness.  相似文献   

13.
A comprehensive analysis of synthesis gas (syngas) oxidation kinetics in wide ranges of temperature, pressure, fuel-to-air equivalence ratio, and fuel composition is performed on the basis of the reaction mechanism of syngas ignition and combustion in air. A vast set of experimental data on the ignition delay time, laminar flame propagation velocity, and time evolution of mole fractions of the basic species, which were obtained in shock tubes and in a flow reactor, is used for verification of the kinetic model. Based on a sensitivity analysis, it is shown that the role of reactions determining the basic characteristics of ignition and combustion depends on the composition of the fuel-air mixture and the syngas proper.  相似文献   

14.
A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.  相似文献   

15.
A detailed kinetic model of propane ignition and combustion in air is developed. The model includes 599 reactions with 92 species and involves both the high-temperature and low-temperature mechanisms of oxidation. The model is tested against experimental data on the ignition delay time, on propane conversion during low-temperature oxidation, on changes in species concentrations during propane pyrolysis, and on laminar flame propagation velocity. The model is tested in wide ranges of the initial temperature T 0 = 680–1900 K, pressure p 0 = 0.17–30 atm, and fuel-air equivalence ratio ϕ = 0.13–2.  相似文献   

16.
在直径35 mm、高度2 mm光学可视的定容燃烧腔内,实验研究了常温常压静止乙烷/空气、丙烷/空气和正丁烷/空气预混气在燃烧腔中心由电火花点燃后向外传播的火焰传播特性。结果表明:3种燃料空气混合气可形成火焰传播的当量比范围不同,范围由大到小排序为乙烷>丙烷>正丁烷;3种燃料均存在由光滑火焰面向褶皱火焰面转变的传播形态;在微型定容燃烧腔内,3种燃料的火焰传播速度均低于常规尺度下定容燃烧弹内火焰传播速度,且火焰传播速度随半径增加而减小;随着当量比增加,火焰锋面容易出现褶皱和断裂现象,在高当量比情况下,火焰传播会出现短暂停滞。  相似文献   

17.
Laminar flame speeds of hydrogen/natural gas/air mixtures have been measured over a full range of fuel compositions (0–100% volumetric fraction of H2) and a wide range of equivalence ratio using Bunsen burner. High sensitivity scientific CCD camera is use to capture the image of laminar flame. The reaction zone area is employed to calculate the laminar flame speed. The initial temperature and pressure of fuel air mixtures are 293 K and 1 atm. The laminar flame speeds of hydrogen/air mixture and natural gas/air mixture reach their maximum values 2.933 and 0.374 m/s when equivalence ratios equal to 1.7 and 1.1, respectively. The laminar flame speeds of hydrogen/natural gas/air mixtures rise with the increase of volumetric fraction of hydrogen. Moreover, the increase in laminar flame speed as the volumetric fraction of hydrogen increases presents an exponential increasing trend versus volumetric fraction of hydrogen. Empirical formulas to calculate the laminar flame speeds of hydrogen, natural gas, and hydrogen/natural gas mixtures are also given. Using these formulas, the laminar flame speed at different hydrogen fractions and equivalence ratios can be calculated.  相似文献   

18.
Homogeneous mixtures of CH4/air under moderate or intense low-oxygen dilution(MILD) combustion conditions were numerically studied to clarify the fundamental effects of exhaust gas recirculation(EGR),espe-cially CO2 in EGR gases,on ignition characteristics.Specifically,effects of CO2 addition on autoignition delay time were emphasized at temperature between 1200 K and 1600 K for a wide range of the lean-to-rich equivalence ratio(0.2~2).The results showed that the ignition delay time increased with equivalence ratio or CO2 dilution ratio.Fur-thermore,ignition delay time was seen to be exponentially related with the reciprocal of initial temperature.Special concern was given to the chemical effects of CO2 on the ignition delay time.The enhancement of ignition delay time with CO2 addition can be mainly ascribed to the decrease of H,O and OH radicals.The predictions of tem-perature profiles and mole fractions of CO and CO2 were strongly related to the chemical effects of CO2.A single ignition time correlation was obtained in form of Arrhenius-type for the entire range of conditions as a function of temperature,CH4 mole fraction and O2 mole fraction.This correlation could successfully capture the complex be-haviors of ignition of CH4/air/CO2 mixture.The results can be applied to MILD combustion as "reference time",for example,to predict ignition delay time in turbulent reacting flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号