共查询到10条相似文献,搜索用时 0 毫秒
1.
基于骨架的动作识别越来越受到重视.针对现有算法推理速度慢、数据模式单一等问题,本文提出了一种轻量且高效的方法.该网络在简单循环单元(Simple Recurrent Unit,SRU)中嵌入图卷积算子构建图卷积SRU(GCSRU)模型,来捕获数据的时空域信息.同时,为了加强节点间的区分,采用空间注意力网络和多流数据融合方式,将GC-SRU拓展成多流空间注意力图卷积SRU(MSAGC-SRU).最后,在公开数据集上进行实验分析.结果表明,本文方法在Northwestern-UCLA上的分类准确率达到了93.1%,模型FLOPs为4.4 G;NTU RGB+D上的分类准确率在CV、CS评估协议下分别达到92.7%和87.3%,模型FLOPs为21.3 G,达到了计算效率和分类精度的良好平衡. 相似文献
2.
针对骨架行为识别不能充分挖掘时空特征的问题,该文提出一种基于时空特征增强的图卷积行为识别模型(STFE-GCN)。首先,介绍表征人体拓扑结构邻接矩阵的定义及双流自适应图卷积网络模型的结构,其次,采用空域上的图注意力机制,根据邻居节点的重要性程度分配不同的权重系数,生成可充分挖掘空域结构特征的注意力系数矩阵,并结合非局部网络生成的全局邻接矩阵,提出一种新的空域自适应邻接矩阵,以期增强对人体空域结构特征的提取;然后,时域上采用混合池化模型以提取时域关键动作特征和全局上下文特征,并结合时域卷积提取的特征,以期增强对行为信息中时域特征的提取。再者,在模型中引入改进通道注意力网络(ECA-Net)进行通道注意力增强,更有利于模型提取样本的时空特征,同时结合空域特征增强、时域特征增强和通道注意力,构建时空特征增强图卷积网络模型在多流网络下实现端到端的训练,以期实现时空特征的充分挖掘。最后,在NTU-RGB+D和NTU-RGB+D120两个大型数据集上开展骨架行为识别研究,实验结果表明该模型具有优秀的识别准确率和泛化能力,也进一步验证了该模型充分挖掘时空特征的有效性。 相似文献
3.
群组行为识别是对个体的共同行为进行识别。群组行为与群组状态密不可分,也与群组内个体时空特征息息相关,时空信息既能描述空间语义信息,更能反映行为的动态变化情况。针对有效精细的时空特征提取问题,本文提出了一种基于注意力机制和深度时空信息的群组行为识别方法。首先将ShuffleAttention引入双流特征提取网络中,有效提取个体外观和运动信息。其次使用改进Non-Local网络提取深度时序信息。最后将个体特征送到图卷积网络中进行空间交互信息建模,得到群组行为识别结果。在CAD和CAED数据集上的准确率达到了93.6%和97.8%,在CAD数据集上与凝聚群组搜索算法(CCS)和成员关系图(ARG)方法相比,准确率提高了1.2%和2.6%,这表明本文方法能有效提取深度时空特征,提升群组行为识别准确率。 相似文献
4.
5.
针对卷积神经网络和图卷积网络的两类算法在校园暴力行为识别中识别速度和识别率不高的问题,本文提出一种结合多信息流数据融合和时空注意力机制的轻量级图卷积网络。以人体骨架为研究对象,首先融合关节点和骨架相关的多信息流数据,通过减少网络参数量来提高运算速度;其次构建基于非局部运算的时空注意力模块关注最具动作判别性的关节点,通过减少冗余信息提高识别准确率;接着构建时空特征提取模块获得关注关节点时空关联信息;最终由Softmax层实现动作识别。实验结果表明:在校园安防实景中对拳打、脚踢、倒地、推搡、打耳光和跪地6种典型动作识别准确率分别为94.5%,97.0%,98.5%,95.0%,94.5%,95.5%,识别速度最大为20.6fps。在UCF101数据集上对比两类基准网络,识别速度和准确率均有提升,验证了方法对其他动作的通用性,可以满足对校园典型暴力行为识别的实时性和可靠性要求。 相似文献
6.
目前手势生成的工作多用于从语音或文本中产生协同的手势以及实现手势数据增强.前者作为非语言信号辅助交流,却难以单独表达语义.对于后者,大多数都是将骨骼关节点当作图像的一个像素,整体当作图像处理,而没有考虑到关节点间丰富的人体结构信息,从而可能导致生成的结果是扭曲的、不自然的.本文提出了基于图卷积的生成式模型,以有效地编码... 相似文献
7.
为解决传统图卷积网络在处理节点间复杂关系时存在的局限性,提出一种基于自适应差异化图卷积的图注意力网络表示学习算法。采用差异化图卷积网络,依据每个节点自身特征和邻居信息进行差异化采样,捕捉节点间的复杂关系;再结合二阶段关键相邻采样方式优先挖掘重要节点并保留随机性,完成关键邻居节点的采样;然后结合图注意力网络,通过局部关注和自适应学习权重分配将关键邻居节点特征聚合到自身节点上,增强节点的特征表示;最后经网络训练,进一步增强网络表示学习能力。实验结果表明,所提出的算法优化了节点聚合程度和边界清晰度,提高了节点分类的准确性和可视化效果,并且通过关注二阶邻居和使用双头注意力,在网络表示学习上也展现出了优越性能。 相似文献
8.
9.
图卷积由于其对图数据的强大表示能力被广泛应用于基于骨架的动作识别任务中.但是现有的图卷积方法在所有帧或通道上都使用共享的图拓扑进行特征聚合,这极大限制了图卷积网络的表示能力.为了解决这些问题,本文提出多维动态拓扑学习图卷积用于动态建模具有时序与通道特异性的拓扑结构.多维动态拓扑学习图卷积主要包含三个组成部分:纯粹节点拓扑学习图卷积(pure Joint topology learning Graph Convolution,J-GC)、动态时序特异性拓扑学习图卷积(Dynamic Temporal-Wise topology learning Graph Convolution,DTW-GC)和通道特异性拓扑学习图卷积(Channel-Wise topology learning Graph Convolution,CW-GC).特别地,在DTW-GC中使用了动态骨架拓扑建模方法(Dynamic Skeleton Topology Learning,DSTL),以高效地建模富含全局时空拓扑特征的动态骨架拓扑.将多维动态拓扑学习图卷积与多尺度时间卷积(Multi-Scale Temporal Convolution,MS-TC)相结合,本文构建了具有强大建模能力的图卷积网络.此外,为了对骨架数据的空间信息进行补充,本文额外引入了相对节点数据和相对骨骼数据进行多流网络的融合.本文所提出的方法在NTU-RGB+D与NTU-RGB+D 120数据集上分别取得了92.64%和89.29%的准确率,超过了当前最先进方法. 相似文献
10.
王璇;王雄;张向阳;杨一;贾浩强 《电子技术与软件工程》2022,(2):177-180
本文针对当前行为识别方法存在提取视频行为特征时信息利用不全面的问题,提出了基于骨架数据、多流和自适应图卷积神经网络的行为识别方法。三流自适应图卷积神经网络(3S-AGCN)针对人体骨架这一自然表示为图的数据结构形式,分别提取骨架图的关节点坐标、骨骼属性以及运动信息,实现了对骨架数据特征的充分提取。模型框架同时还引入了多注意力机制,分别从时间、空间和通道三个方向加强对重要信息的特征的提取能力。同时引入OpenPose算法首先提取人体骨架数据图再输入模型进行训练和识别任务,提高了模型在复杂环境下进行行为识别任务的鲁棒性。基于NTURGBD公共数据集,与当前先进方法的横向比较实验,结果表明3S-AGCN模型在行为识别任务上具有更高的准确率,验证了模型的可行性。 相似文献