首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
玄伟伟  董彦吾  王海轮 《化工学报》2022,73(11):5251-5262
气化技术是处理日益增多的废旧塑料并生产富H2合成气的重要方法。利用ReaxFF-MD与DFT方法相结合研究了聚丙烯(PP)塑料水蒸气气化的反应机理及各产物气的生成路径,进一步探究了温度、水含量对合成气产物分布的影响。研究结果表明:PP塑料的水蒸气气化前期以解离能较小处的单体连接键断裂形成丙烯(CH3—CH̿    CH2)单体为主要反应过程。随后,单体继续解离生成更小的C1~C2烃类分子及·H、CH3·等自由基片段。在水蒸气重整反应阶段,H2的生成有多种路径,但由前期含C结构上脱掉的游离·H自由基与H2O的结合是H2的最主要生成路径,占据了H2生成量的70%。同时伴随产生的·OH自由基通过与小分子结合,脱H等过程,是CO的主要生成方式。提高温度和含水量可促进烃类的水蒸气重整反应,从而提高H2和CO合成气产率,但改善效果逐渐减弱。以上结果对于掌握塑料水蒸气反应进程,以及实验参数调整有重要指导意义。  相似文献   

2.
采用分子动力学模拟方法,选取Ni、ZSM-5以及Ni/ZSM-5催化剂,对轮胎橡胶热解制氢的机理进行探究,并同时与前人做过的实验研究进行对比验证模拟计算。文中利用Material Studio建立轮胎橡胶模型,DMol3模块对生成氢气路径进行过渡态搜索,CULP模块对其加入Ni催化剂的热解过程进行模拟。模拟结果表明,制氢催化效果顺序为Ni>Ni/ZSM-5>ZSM-5。催化热解大致分为两个阶段:①低温阶段长链裂解成单体化合物,单体主要是异戊二烯、苯乙烯以及1,3-丁二烯;②高温阶段自由基攻击单体生成小分子物质。加入Ni催化剂后降低了热解终止温度。催化剂的加入在低温阶段主要表现在加快热解进程,增加低温阶段时单体数量。在高温阶段主要表现在改变了气体产物分布,Ni的加入降低了轮胎热解温度,并且使氢比例增加。  相似文献   

3.
陈晨  杨倩  陈云  张睿  刘冬 《化工学报》2022,73(9):4133-4146
燃煤有机污染物对人类健康和生态环境存在严重危害,而O2对火焰中有机产物的形成具有明显的调控作用。鉴于煤挥发分燃烧是燃煤过程中至关重要的一环,本文以煤热解气为燃料,通过数值模拟研究了氧化剂侧O2浓度对对冲扩散火焰中碳氢产物生成特性和机制的影响。结果表明,O2浓度升高促进了O和OH的生成,进而提高H浓度,突显了含H和OH参与的反应的重要性。此外,乙炔(C2H2)、丙炔(PC3H4)、炔丙基(C3H3)、乙烯基乙炔(C4H4)、苯(C6H6)和萘(C10H8)的浓度均增大。增加O2浓度促进了C2H2向PC3H4的转化,并使得C3H3更倾向于转化为丁二烯(C4H6),而富烯更倾向于通过苯基(C6H5)生成C6H6,因此C6H5作为C6H6前体的地位被加强。  相似文献   

4.
陈晨  杨倩  陈云  张睿  刘冬 《化工学报》1951,73(9):4133-4146
燃煤有机污染物对人类健康和生态环境存在严重危害,而O2对火焰中有机产物的形成具有明显的调控作用。鉴于煤挥发分燃烧是燃煤过程中至关重要的一环,本文以煤热解气为燃料,通过数值模拟研究了氧化剂侧O2浓度对对冲扩散火焰中碳氢产物生成特性和机制的影响。结果表明,O2浓度升高促进了O和OH的生成,进而提高H浓度,突显了含H和OH参与的反应的重要性。此外,乙炔(C2H2)、丙炔(PC3H4)、炔丙基(C3H3)、乙烯基乙炔(C4H4)、苯(C6H6)和萘(C10H8)的浓度均增大。增加O2浓度促进了C2H2向PC3H4的转化,并使得C3H3更倾向于转化为丁二烯(C4H6),而富烯更倾向于通过苯基(C6H5)生成C6H6,因此C6H5作为C6H6前体的地位被加强。  相似文献   

5.
非平衡等离子体重整CO2-CH4制合成气是实现2种温室气体资源化利用的新兴技术途径。综合采用发射光谱分析、反应动力学计算和连续质谱对常温常压介质阻挡放电(DBD)非热等离子体重整CO2-CH4反应途径进行探索。比功率SEI为52 J/cm3时,可得到CH4和CO2转化率最大分别为22.8%和9.4%。稳态气相产物连续质谱在线分析表明,C2H4为C2烃生成重要中间体,CH4比例越高C2烃生成量越大,且按C2H62H42H2顺序升高。发射光谱检测到·CH、·C2自由基和CO、CO■特征谱线,·CH相对强度随比功率增加明显降低,CO■相对强...  相似文献   

6.
含油污泥中石油烃组分复杂,仅靠产物的宏观分析结果难以揭示热解过程组分之间的相互作用。以正十二烷、1-十二烯、甲基环己烷、对二甲苯和1-甲基萘五种化合物分别代表含油污泥中石油烃的链烷烃、链烯烃、环烷烃、单环芳烃和多环芳烃五种组分,构建含油污泥石油烃的模型化合物。采用基于反应力场的分子动力学模拟方法,研究了热解过程中的产物分布及各组分之间的相互作用。结果表明,模型化合物热解产物以H2和C1~3的小分子化合物为主,热解前期主要为C2H4、C3H6,热解后期主要为C2H2、C3H4和H2。相对于模型化合物中各组分单独热解,混合热解过程中石油烃各组分的消耗速率明显加快,且热解产物的片段数也有一定程度的增加。根据一级反应动力学模型,石油烃各组分在混合热解过程中的表观活化能有不同程度降低,其中链烷烃、链烯烃和环烷烃的表观活化能分别降低了16.493 kJ/mol、50.571 kJ/mol和146.289 kJ/mol,这从分子模拟层面证明了含油污泥石油烃各组分之间热解的协同作用。  相似文献   

7.
吴嵘  吴素芳 《化工学报》2014,65(6):1961-1970
为拓宽反应吸附强化水蒸气重整制氢(ReSER)原料的应用范围,采用化工流程模拟软件Aspen Plus,针对包括C2H4、C2H6、C3H6、C3H8 的C2/C3轻烃 ReSER制氢反应可行性和优化条件进行热力学分析计算。在选择的反应压力0.1~5 MPa,温度200~800℃,水碳摩尔比(S/C)1~8和吸附剂中氧化钙和原料碳摩尔比(Ca/C)0~5条件下进行热力学分析计算。计算结果表明:在优选的水碳比(S/C)4,钙碳比(Ca/C)2.5,温度200~650℃,压力0.1~1.8 MPa的条件下, C2H4、C2H6、C3H6、C3H8均可分别通过ReSER反应获得H2含量在95%以上的产物,产物中H2浓度均随着水碳比和钙碳比的增大而提高。在假设的水碳比4,钙碳比2.5条件下,当CO2脱除率达到0.9以上,C2H4、C2H6、C3H6、C3H8的反应温度分别高于250、400、250、350℃时,产物中H2摩尔分数均可达到95%以上,产物中的H2浓度随着反应温度的升高和CO2脱除率的增加而提高。当CO2脱除率低于0.9,产物H2摩尔分数要达到95%时,C2H4、C2H6、C3H6、C3H8的反应温度均需升高50℃。在相同长度C链的烃类中,烯烃比烷烃更容易发生ReSER反应。而原料的碳链越长,则越容易发生ReSER制氢反应。  相似文献   

8.
梁天水  王新科  刘德智  钟委 《化工学报》1951,73(10):4762-4768
氟胺类物质是最有希望作为哈龙替代品的含氮化合物之一,全氟三乙胺作为典型的氟胺类物质具有良好的灭火效果。为研究全氟三乙胺热解机理,在管式加热炉内对全氟三乙胺进行热分解,通过GC-MS分析全氟三乙胺在不同温度条件下的热解产物,并用Gaussian软件对其热解反应路径进行理论计算。结果表明:保持停留时间为10 s,全氟三乙胺的初始热解温度为600℃,750℃完全热解,热解产物有C4F9N、C3F7N、C2F6和C3F8,热解温度较低时C4F9N体积分数最大,热解温度较高时C3F7N体积分数最大。在全氟三乙胺热解反应路径计算中,全氟三乙胺分子中的C—C键断裂后存在1条反应路径,可生成实验产物中的C3F8;全氟三乙胺分子的C—N键断裂后存在3条反应路径,可生成实验产物中的C3F7N、 C4F9N和C2F6。全氟三乙胺热解后产生的CF3自由基可与H、OH自由基发生反应,从而产生灭火作用。此外,其热解产物C4F9N和C3F7N具有CN双键,更容易与燃烧活泼自由基·OH、·H发生化学作用,对研究全氟三乙胺的灭火机理具有十分重要的意义。  相似文献   

9.
梁天水  王新科  刘德智  钟委 《化工学报》2022,73(10):4762-4768
氟胺类物质是最有希望作为哈龙替代品的含氮化合物之一,全氟三乙胺作为典型的氟胺类物质具有良好的灭火效果。为研究全氟三乙胺热解机理,在管式加热炉内对全氟三乙胺进行热分解,通过GC-MS分析全氟三乙胺在不同温度条件下的热解产物,并用Gaussian软件对其热解反应路径进行理论计算。结果表明:保持停留时间为10 s,全氟三乙胺的初始热解温度为600℃,750℃完全热解,热解产物有C4F9N、C3F7N、C2F6和C3F8,热解温度较低时C4F9N体积分数最大,热解温度较高时C3F7N体积分数最大。在全氟三乙胺热解反应路径计算中,全氟三乙胺分子中的C—C键断裂后存在1条反应路径,可生成实验产物中的C3F8;全氟三乙胺分子的C—N键断裂后存在3条反应路径,可生成实验产物中的C3F7N、 C4F9N和C2F6。全氟三乙胺热解后产生的CF3自由基可与H、OH自由基发生反应,从而产生灭火作用。此外,其热解产物C4F9N和C3F7N具有CN双键,更容易与燃烧活泼自由基·OH、·H发生化学作用,对研究全氟三乙胺的灭火机理具有十分重要的意义。  相似文献   

10.
在加压固定床反应器中进行淖毛湖煤在常压和1.5 MPa氢气和氮气中的热解试验,利用多种表征方法对比研究了氢气和氮气下的热解产物产率和组成及半焦结构的变化,并利用热重分析研究热解半焦的CO2气化反应性。结果表明:与常压N2中热解相比,煤在加压的H2中热解可有效提高热解气体中CH4和C2~C3的产率,在800℃热解CH4和C2~C3的体积产率分别由53.5和16.6 mL/g增至345.6和20.8 mL/g。焦油和轻质焦油产率也有效提升,在600℃下,与常压N2中热解相比,1.5 MPa H2中煤热解的焦油产率由19.3%升至22.8%,焦油中脂肪烃含量由35.5%降至14.8%,单环芳烃含量由8.3%增至28.9%,轻质焦油质量分数和产率分别升至95.0%和21.8%。半焦的N2吸附和拉曼光谱分析结果表明,煤在加压H...  相似文献   

11.
罗振敏  苏彬  王涛  程方明 《化工学报》2019,70(9):3601-3615
为研究C2H6/C3H8对甲烷爆炸极限参数及动力学特性的影响,采用标准的可燃气体爆炸极限测定装置测定了不同配比的C2H6/C3H8混合气体对甲烷爆炸极限的影响规律,同时得出了氮气惰化条件下甲烷爆炸临界参数的变化规律。此外,利用Chemkin软件模拟了C2H6/C3H8混合气体对甲烷爆炸过程中中间产物浓度的影响情况,并进行了敏感性分析。结果表明,C2H6/C3H8的存在降低了甲烷的爆炸上下限,增大了甲烷的爆炸危险度;在氮气惰化过程中甲烷的爆炸上限下降,爆炸下限上升,最终爆炸上下限重合,重合点处甲烷浓度和氮气临界浓度均随C2H6/C3H8的添加而逐渐减小;此外,C2H6/C3H8混合气体使甲烷爆炸过程中CO和·H的生成量逐渐增大,而CO2、·O和·OH的生成量则有下降趋势,通过对爆炸过程中甲烷体积的敏感性分析,发现C2H6/C3H8的存在在某种程度上促进了甲烷爆炸。对比不同配比的C2H6/C3H8混合气体,发现C3H8含量越高,其对甲烷爆炸过程中相关参数的影响越大,这可为工矿企业的安全生产提供一定的理论依据。  相似文献   

12.
梁文胜  刘江涛  赵月  黄伟  左志军 《化工学报》2019,70(4):1429-1435
在煤热解过程中加入特定的催化剂可以改变煤结构中相关化学键的结合能,使热解在相对温和的条件下进行,促使更多的小分子从煤结构上解离成为产物释放,并调节产物的产率和组成,提高转化率及产物的品质。由于煤化学结构的复杂性,从分子水平研究煤的催化热解行为非常困难。基于此,以煤的催化热解为背景,采用煤模型化合物,借助密度泛函理论(DFT),选取苯甲酸(C6H5COOH)为煤基模型,以NiO和Ni为催化剂,研究催化热解过程中催化剂价态改变对煤催化剂热解的作用。DFT结果显示,苯甲酸热解的主要路径为:C6H5COOH CO2+C6H6和C6H5COOH C6H6COO CO2+C6H6;在NiO上的分解路径为:C6H5COOH(g) *C6H5COO + *H *CO2 + *C6H6 CO2(g) + C6H6(g) ;在金属Ni上的分解路径为:C6H5COOH(g) *C6H5COOH *C6H5COO + *H *CO2 + *C6H6 CO2(g) + C6H6(g) 。Ni基催化剂的加入能够促进C6H5COOH的热解,同时改变了苯甲酸的热解路径,但是产物不变。当NiO被还原为金属Ni时,催化效果减弱。  相似文献   

13.
The effect of the addition of a second fuel such as CO, C3H8 or H2 on the catalytic combustion of methane was investigated over ceramic monoliths coated with LaMnO3/La-γAl2O3 catalyst. Results of autothermal ignition of different binary fuel mixtures characterised by the same overall heating value show that the presence of a more reactive compound reduces the minimum pre-heating temperature necessary to burn methane. The effect is more pronounced for the addition of CO and very similar for C3H8 and H2. Order of reactivity of the different fuels established in isothermal activity measurements was: CO>H2≥C3H8>CH4. Under autothermal conditions, nearly complete methane conversion is obtained with catalyst temperatures around 800 °C mainly through heterogeneous reactions, with about 60–70 ppm of unburned CH4 when pure methane or CO/CH4 mixtures are used. For H2/CH4 and C3H8/CH4 mixtures, emissions of unburned methane are lower, probably due to the proceeding of CH4 homogeneous oxidation promoted by H and OH radicals generated by propane and hydrogen pyrolysis at such relatively high temperatures.

Finally, a steady state multiplicity is found by decreasing the pre-heating temperature from the ignited state. This occurrence can be successfully employed to pilot the catalytic ignition of methane at temperatures close to compressor discharge or easily achieved in regenerative burners.  相似文献   


14.
Alkali halide added transition metal oxides produced ethylene selectively in oxidative coupling of methane. The role of alkali halides has been investigated for LiCl-added NiO (LiCl/NiO). In the absence of LiCl the reaction over NiO produced only carbon oxides (CO2 + CO). However, addition of LiCl drastically improved the yield of C2 compounds (C2H6 + C2H4). One of the roles of LiCl is to inhibit the catalytic activity of the host NiO for deep oxidation of CH4. The reaction catalyzed by the LiCl/NiO proceeds stepwise from CH4 to C2H4 through C2H6 (2CH4 → C2H6 → C2H4). The study on the oxidation of C2H6 over the LiCl/NiO showed that the oxidative dehydrogenation of C2H6 to C2H4 occurs very selectively, which is the main reason why partial oxidation of CH4 over LiCl/NiO gives C2H4 quite selectively. The other role of LiCl is to prevent the host oxide (NiO) from being reduced by CH4. The catalyst model under working conditions was suggested to be the NiO covered with molten LiCl. XPS studies suggested that the catalytically active species on the LiCl/NiO is a surface compound oxide which has higher valent nickel cations (Ni(2+δ)+ or Ni3+). The catalyst was deactivated at the temperatures>973 K due to vaporization of LiCl and consumption of chlorine during reaction. The kinetic and CH4---CD4 exchange studies suggested that the rate-determining step of the reaction is the abstraction of H from the vibrationally excited methane by the molecular oxygen adsorbed on the surface compound oxide.  相似文献   

15.
栗童  仲兆平  张波 《化工进展》2019,38(9):4044-4051
为探究典型生物质原料纤维素与多氢原料聚乙烯共热解过程中官能团的相互作用及协同效应,本文利用傅里叶变换红外光谱仪、热裂解-气相色谱/质谱联用仪、热重-质谱及流化床对纤维素及其与聚乙烯混合共同热解实验产物进行分析。傅里叶变换红外光谱实验表明,纤维素红外谱图的主要基团为CH3、CH、CH2,多氢原料的加入均会提升碳氢基团的相对含量。热重-质谱实验表明纤维素的实验主要产物为C3H8,聚乙烯的加入会提升C2H4的离子流强度。热裂解-气相色谱/质谱联用实验表明,纤维素的热解产物以左旋葡聚糖为主,聚乙烯的加入使得纤维素中烃类的含量得到较大幅度的提升,HZSM-5的催化使得芳烃类产物的相对含量得到提升。流化床热解验证实验的总体趋势与PY-GC/MS实验一致,在纤维素与聚乙烯共热解的基础上再加入HZSM-5催化,可以得到最佳的实验效果。  相似文献   

16.
With the increasing demand for synthetic rubber, the purification of 1,3-butadiene (C4H6) is of great industrial significance. Herein, the successful removal of n-butene (n-C4H8) and iso-butene (iso-C4H8) from 1,3-butadiene (C4H6) was realized by synthesizing a novel TaOF52- anion-pillared ultramicroporous material TaOFFIVE-3-Ni (also referred to as ZU-96, TaOFFIVE=TaOF52-, 3=pyrazine). Single-component adsorption isotherms show that TaOFFIVE-3-Ni can achieve the exclusion of n-C4H8 and iso-C4H8 in the low pressure region (0-30 kPa), and uptake C4H6 with a high capacity of 92.78 cm3·cm-3 (298 K and 100 kPa). The uptake ratio of C4H6/iso-C4H8 on TaOFFIVE-3-Ni was 20.83 (298 K and 100 kPa), which was the highest among the state-of-the-art adsorbents reported so far. With the rotation of anion and pyrazine ring, the pore size changes continuously, which makes smaller-size C4H6 enter the channel while larger-size n-C4H8 and iso-C4H8 are completely blocked. The excellent breakthrough performance of TaOFFIVE-3-Ni shows great potential in industrial separation of C4 olefins. The specific adsorption binding sites within ZU-96 was further revealed through the modeling calculation.  相似文献   

17.
鉴于传统微波吸收剂在协同微波热解含油污泥时存在热解效率较低、处理成本较高等问题,本文引入磁性纳米粒子作为新型微波吸收剂,探究了磁性纳米粒子种类和质量浓度在强化微波热解含油污泥中的作用效果和规律。实验结果表明:(1)在6种磁性纳米粒子(Zn Fe2O4、Fe3O4、Ni、Ni Fe2O4、γ-Fe2O3和Co3O4)中,添加Zn Fe2O4的实验组热解终温最高,为284℃,气、液相产物最多,分别为382m L和10.5m L;(2)当微波功率为800W、微波加热时间为20min时,添加纳米Zn Fe2O4实验组的热解终温在质量浓度5.0mg/g时最高;(3)随着纳米Zn Fe2O4质量浓度的增加,气相热解产物中H2、CH...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号