首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
煤气化渣是由煤气化工艺产生的一种富含铝硅酸盐、灰组分及残炭的大宗工业固体废弃物,其规模化生产对生态环境造成了严重的影响。因此,将煤气化渣进行炭-灰分离是实现其减量化、无害化和资源化利用的关键。以煤气化渣为研究对象,采用高效解离-选择性絮凝耦合作用的工艺,为实现煤气化渣更为合理、高效的资源化利用,减少煤气化渣带来的土壤、空气、水体资源等污染问题,对煤气化渣进行提炭实验研究。首先分析了煤气化渣的理化性质,其次采用单因素变量法探究了磨矿时间、pH、絮凝剂种类、絮凝剂用量、高速剪切转速对煤气化渣提炭实验的影响,以实现残余炭产品的高度富集。结果表明:原煤气化渣灰分质量分数为67.19%,普通湿筛筛上物料灰分质量分数为54.3%,当煤气化渣磨矿时间为5 s, pH为7,絮凝剂聚氧化乙烯用量为0.4 kg/t,在转速为4 000 r/min高速剪切15 min的条件下提炭效果最佳,最终可获得产率为26.6%、湿筛筛上灰分质量分数为43.3%的残炭产品。对比普通湿筛法,基于高效解离-选择性絮凝实验方法在普通湿筛的基础上灰分质量分数降低了11%,降灰效果明显。  相似文献   

2.
我国能源结构特点为富煤、贫油、少气,煤化工行业发展充满机遇和挑战。煤气化技术是现代煤化工的前端支柱,是实现煤炭清洁、高效、绿色、低碳利用的有效途径,具有重要的国家战略意义。煤气化技术规模化应用产生的大量固体废弃物(煤气化渣)的处置,是煤化工基地当前迫切需要解决的问题。分别从国内具代表性煤化工基地的气化灰渣粒度组成、矿物构成、微观形貌、表面性质和持水特性等理化性质入手,对比分析不同炉型、产地、气化工艺等条件下的灰渣特点。灰渣物性特点的差异化与气化工艺、炉型、煤种等因素均相关。灰渣主要组分为硅铝矿物等,其中粗渣粒度普遍偏大;细渣残炭质量分数一般在20%左右,且其表面含氧官能团丰富。此外,细渣因其孔隙率高,含水率较高。基于气化灰渣理化性质,系统归纳了目前报道的气化灰渣提质方法,提出炭-灰分离是实现气化灰渣减量化与资源化利用的重要前提。从高效回收微细粒矿物角度考虑,浮选是最合适的炭-灰分离方法,但由于残炭发达的孔隙结构与含氧亲水性基团的存在导致可浮性差,目前生产成本较高;从降低生产成本、提高处理量角度考虑,重力分选方法是首选,但存在分选下限高的问题;而磁力分选则对铁磁性矿物含量高的灰渣更具有针...  相似文献   

3.
煤气化细渣是煤炭气化过程中产生的固体废弃物,目前主要通过填埋方式处理,但由于其含碳量较高,仍具有一定的利用价值,碳灰分离是实现其减量化、资源化利用的关键。以榆林地区煤气化细渣为研究对象,采用浮选方法进行脱碳试验,在基本特性分析的基础上,研究不同浮选条件及工艺对分选效果的影响,当柴油用量14 kg/t、仲辛醇用量14 kg/t时,经一次分选,精矿产品灰分为37.88%,尾矿产品灰分为51.65%,可燃体回收率51.99%;采用一粗一精一扫浮选工艺流程,粗选柴油用量14 kg/t、扫选柴油用量7 kg/t时,可得精矿灰分18.87%、产率20.30%的产品,最终计算精矿产率为41.76%,灰分27.92%,可燃体回收率55.08%。通过一粗一精一扫浮选工艺流程,该煤气化细渣中的碳灰得到较好的分选分离,但整体浮选药剂消耗过高,且粗选过程细粒物料更易上浮成为精矿产品,扫选过程继续添加药剂后才能使粗颗粒物料有效上浮,导致出现扫选精矿比精选精矿灰分更低的现象。对该煤气化细渣样品进行表面形貌、孔隙结构、表面官能团分析以及小浮沉试验,表明样品比表面积大、孔隙结构发达,易吸附大量药剂,导致浮选药剂消耗过大,经济性差。  相似文献   

4.
采用三产品重介质旋流器对小于50 mm煤样进行了分选实验,并分别对精煤、中煤和矸石产品进行了筛分及分粒级浮沉试验,绘制了不同粒度、密度物料在三产品重介质旋流器中的分配曲线和错配物曲线;结果表明:旋流器一段各粒级分选精度高于二段,错配物含量随粒度减小而急剧增加,3~0.5 mm粒级的分选效果最差,其余各粒级分选效果较好,且差别不明显。  相似文献   

5.
自生介质旋流器是一种利用离心力场分选末煤的新设备。本文通过正交试验研究了该设备的结构参数与分选效果的关系,在此基础上对其结构进行优化,得到了较理想的分选效果。  相似文献   

6.
煤气化渣提炭分质是实现其减量化、无害化、资源化利用的关键。本文以榆林地区气化粗渣为原料,利用自研的水流分级装置,研究了粗渣直接水流分级与先湿法筛分再水流分级组合的提炭分质特性。结果表明:水流分级能够高效实现粗渣中的炭灰分离,通过调整水流速和叶轮转速,所得浮渣烧失量最高可达43.16%,尾渣烧失量则低至6.63%。先湿法筛分再水流分级组合能够进一步提高粗渣中炭的回收,尤其是对于0.5~0.18mm粒级样品,其烧失量可提高至70.05%,该方法相对于直接水流分级其可燃体回收率和综合效率均显著提高。对粗渣及水流分级所得样品微观结构分析发现,残炭颗粒多呈不规则形状,表面粗糙且孔隙发达,灰颗粒则主要为大小不一的熔融球体和不规则的表面光滑且致密的颗粒。密度测定结果表明,分级样品的残炭含量越高,其密度越小。  相似文献   

7.
论述了采用高精度重介质旋流器进行两段等密度分选制备超低灰煤(灰分≤2.00%)的技术;经过十多年的优化试验研究,确定了旋流器的结构参数,消除了旋流器内的冲击磨损,保证了悬浮液密度和入口压力的稳定;以超低灰煤为原料生产活性炭、增碳剂、高石墨阴极炭块等产品可获得较高的经济效益。  相似文献   

8.
重介质旋流器分选工艺参数分析   总被引:2,自引:0,他引:2  
通过对旋流器内的物料进行受力分析,介绍了重介质旋流器的分选原理及悬浮液的配置方案;从旋流器结构参数、选前是否脱泥、入料压力控制及给料方式等方面论述了影响重介质旋流器分选效果的因素。  相似文献   

9.
煤泥重介旋流器在赵各庄选煤厂的应用   总被引:1,自引:0,他引:1  
阐述了煤泥重介旋流器的结构特征和工作原理。通过小筛分试验、小浮沉试验和分配曲线分析煤样性质。煤泥重介旋流器分选下限已达到O.10mm,溢流精煤灰分由入料17.78%降至14.76%,底流灰分达到36.19%,起到了降灰作用;煤泥重介旋流器溢流精煤累计灰分为9.97%,小于精煤产品灰分要求;分选密度6。为1.55kg/L,可能偏差E为0.085,分选效果达到设计要求。煤泥重介工艺自2011年在赵各庄选煤厂应用以来,使用效果较好,1.00~0.25mm粗精煤灰分由原来的14%降至11%以下,避免了对精煤产品的污染,降低了浮选系统的入浮煤泥量;精煤损失较低,洗选效率达到90%以上。最后针对煤泥重介工艺存在的合格介质分流量调节空间受限、煤泥合格介质密度调节滞后、精煤产品分级效果差等问题提出了相应的解决措施。  相似文献   

10.
针对协庄选煤厂粗煤泥分选系统分选效率低、配套设备多等问题,基于原煤煤泥试验分析结果,对粗煤泥分选系统进行了技术改造,利用三锥角水介质旋流器替代原来的螺旋分选机及TBS粗煤泥分选设备;改造后分选效率提高,精煤产率提高约0.5个百分点,配套设备减少,电耗降低,同时浮选入料性质得到改善,有效减少了浮选跑粗现象,改善了脱介效果,减少了产品带介损失。  相似文献   

11.
阐述了煤气化化学及气化过程,说明煤气化过程主要包括煤的热裂解、部分氧化燃烧、炭的气化、炉渣的生成和排出4个转化步骤。论述了固定床气化技术、流化床气化技术、气流床气化技术3种煤气化技术的工艺、设备、优缺点和适用范围。从煤灰液渣对耐火衬里的腐蚀机理、煤灰化学组成、灰熔融性和灰熔融温度、液渣黏度四方面分析了气流床灰/渣特性。最后阐述了美国煤气化技术进展及发展方向,提出应重点开展IGCC煤气化、低阶煤(褐煤和次烟煤)气化技术研究,开展以提高气化炉可靠性、气化效率和煤种适应性为目标的气化炉优化研究,控制多种污染物排放至极低水平的合成气净化技术研究,低成本高效率的O2分离技术及H2和CO2的分离技术研究等。  相似文献   

12.
张红潮 《现代化工》2005,25(1):45-47
介绍了灰粘聚循环流化床粉煤气化的原理、工艺流程及工艺特点。该流化床底部设置了灰粘聚分离装置,在炉内形成中心高温区,使炉渣在中心高温区内粘聚成灰球,借助密度差异,有选择地使煤粉与灰球分离,从而降低灰渣的含碳量,提高了煤中碳的转化率。将该技术应用于合成氨生产中,每吨氨可增加综合经济效益295 14元。  相似文献   

13.
我国富煤、贫油、少气的能源结构特点,石油、天然气对外依存度高的实际情况以及对煤炭高效清洁利用的重视赋予了煤化工产业发展的机遇,作为煤化工产业龙头的煤气化技术在中国蓬勃发展。随着煤气化技术的大规模推广,煤气化渣的堆存量及产生量越来越大,造成了严重的环境污染和土地资源浪费,对煤化工企业的可持续发展造成不利影响,煤气化渣处理迫在眉睫。笔者介绍了煤气化渣的产生及其带来的环境问题,煤气化渣的基本特点,综述了国内外煤气化渣在建工建材(骨料、胶凝材料、墙体材料、免烧砖)、土壤水体修复(土壤改良、水体修复)、残碳利用(残碳性质、残碳提质、循环掺烧)、高值化利用(催化剂载体、橡塑填料、陶瓷材料、硅基材料)等方面的研究进展,提出了煤气化渣综合利用思路。煤气化渣主要由SiO2、Al2O3、CaO、Fe2O3、C组成,气化细渣残碳含量较气化粗渣高,煤气化渣的主要矿相为非晶态铝硅酸盐,夹杂着石英、方解石等晶相,富含硅、铝、碳资源的化学组成特点和特殊的矿相构成是煤气化渣回收利用的基础。目前煤气化渣规模化处置利用主要聚焦在建工建材、生态治理等方面,但因其碳含量高、杂质含量高等特点,导致建工建材掺量低、品质不稳定,生态治理二次污染严重等问题,经济和环境效益差。在资源化利用方面,结合煤气化渣资源特点,目前主要在碳材料开发利用、陶瓷材料制备、铝/硅基产品制备等方面引起广泛关注,虽然经济效益相对显著,但均处于实验室研究或扩试试验阶段,主要存在成本高、流程复杂、杂质难调控、下游市场小等问题,无法实现规模化利用。为了提高企业经济效益,同时解决企业环保难题,结合煤气化渣堆存量大、产生量大、处理迫切的现状以及富含铝、硅、碳资源的特殊属性,建议煤气化渣的综合利用思路为"规模化消纳解决企业环保问题为主+高值化利用增加企业经济效益为辅"。开发过程简单、适应性强、具有一定经济效益的煤气化渣综合利用技术路线,是目前煤气化渣利用的有效途径和迫切需求。  相似文献   

14.
The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have brought opportunities for coal chemical industry.However,with the large-scale popularisation of coal gasification technology,the production and resulting storage of coal gasification slag continue to increase,which not only result in serious environmental pollution and a waste of terrestrial resources,but also seriously affect the sustainable development of coal chemical enterprises.Hence,the treatment of coal gasification slag is extremely important.In this paper,the production,composition,morphology,particle size structure and water holding characteristics of coal gasification slag are introduced,and the methods of carbon ash separation of gasification slag,both domestically and abroad,are summarised.In addition,the paper also summarises the research progress on gasification slag in building materials,ecological restoration,residual carbon utilisation and other high-value utilisation,and ultimately puts forward the idea of the comprehensive utilisation of gasification slag.For large-scale consumption to solve the environmental problems of enterprises and achieve high-value utilisation to increase the economic ben-efits of enterprises,it is urgent to zealously design a reasonable and comprehensive utilisation technolo-gies with simple operational processes,strong adaptability and economic benefits.  相似文献   

15.
余润翔  张彤  杨岩  刘泽  王群英 《硅酸盐通报》2022,41(12):4318-4323
煤气化渣与粉煤灰均为煤炭资源利用过程中产生的固体废弃物,可以应用在碱激发领域。从煤气化粗渣的性质入手,采用粉煤灰对煤气化粗渣进行改性,利用碱激发技术制备了煤气化粗渣-粉煤灰基地质聚合物,并对所制备产物的性能进行研究。结果表明,在体系中掺入粉煤灰可以明显改善其力学性能,当粉煤灰掺入量为30%(质量分数)时,样品的28 d抗压强度最高,达到44.5 MPa。此外,通过对样品进行物相分析与微观形貌表征发现,样品的无定形产物主要为N(C)-A-S-H凝胶,它能够结成相互连接的空间网状结构,具有较强的黏结能力,这是样品材料具有较高强度的主要原因。  相似文献   

16.
以气流床煤气化粗渣和细灰为原料,采用筛分和磁选的方法研究了磁性灰粒在不同粒级气化灰渣中的分布特性。结果表明:随着灰渣粒径的减小,在粗渣和细灰中,磁性灰粒的含量均呈现先升高后降低的趋势,磁性灰粒在粗渣中的含量高于细灰。粗渣中,磁性灰粒在0.5~0.25mm粒级中分布最多,该粒级神宁炉和GSP气化炉粗渣在粒度组成中的占比也最高,质量分数分别为38.42%和37.16%,各个粒级中磁性灰粒产率随粒径减小呈递增趋势;细灰中,磁性灰粒在0.074~0.045mm粒级中分布最多,而细灰粒度组成中的占比最高的却是大于0.25mm粒级,磁性灰粒产率在各个粒级都不高,呈现随粒径减小而升高的规律。气化过程中,磁铁矿会更多地富集在凝结团聚且高度玻璃化的大粒径粗渣中,粗渣和细灰中仍有相当量的含铁物相不显磁性。不同粒级煤气化灰渣中磁性灰粒的分布特性可为气化渣分级分质及高值化利用提供基础数据支撑和应用思路。  相似文献   

17.
张宗飞  汤连英  章卫星  赵涛 《化肥设计》2011,49(1):11-13,16
目前我国干煤粉熔渣气化装置较多,其生产过程受煤中灰分稳定性的影响较大.分析了煤灰的组分、性质以及灰熔性特征温度对气化效果的影响;采用Ashizawa等和戴爱军等回归的经验公式或多元相图对煤的灰熔点进行了较为准确的预测;研究了煤灰分的黏结性、微量组成、黏温曲线和临界温度等对煤气化装置运行操作的影响.  相似文献   

18.
A simple model was proposed for char capture by molten slag surface under high-temperature gasification conditions. In this model, char particles were pneumatically conveyed onto the molten slag surface. The char particles were assumed to be captured if they reach the molten slag surface, whereas they were repelled if they reach the part that is covered by the unreacted char particles. Thus the probability of char capture was given by the balance of char feed rate per unit surface area of the slag and the rate of char consumption by the gasification reaction.Experiments were carried out to evaluate the probability of char capture by molten slag surface at 1350 °C. A ceramic tube whose bottom was closed was vertically placed in an electric furnace. Mixture of coal ash and flux (limestone) was placed at the bottom of the reactor. The reactor was heated up to a temperature higher than the melting point of the mixture of coal ash and flux, thus slag was formed at the bottom. Char particles were conveyed by gas stream from the top of the reactor to the molten slag surface. If the char particles were not captured at the reactor bottom, they were immediately conveyed out of the reactor by the gas stream. CO was produced by gasification reaction in pure CO2 or CO2 diluted by N2. The conversion of carbon to CO decreased with increasing char feed rate. The effect of char properties such as particle size, density, and gasification rate, on the conversion of carbon to CO was evaluated. The theoretical results agreed well with the experimental results.  相似文献   

19.
A low-rank Slovak sub-bituminous coal from the Handlová deposit was physically treated by washing in a water-only cyclone with the goal to find the separation effect for inorganic (mainly Fe-bearing minerals) and organic substances (humic acids, diterpanes). A high-quality coal product with the ash content in the dry matter of 9.02% and carbon content of Cd = 68.12% at a mass yield of 29.51% was obtained using the water-only cyclone processing. At first, the physically treated coal samples were detailed characterized by XRD, 57Fe Mössbauer spectroscopy, FT-IR and HR-TEM. In addition to non-crystalline organic coal components, inorganic compounds belonging to silicate minerals (kaolinite, muscovite and quartz) as well as to Fe-bearing sulphide minerals (pyrite) were identified in the sub-bituminous coal by XRD. 57Fe Mössbauer spectroscopy detected the presence of iron carbonate (siderite), iron-containing clay mineral and two sulphur-containing minerals (pyrite, jarosite) in the untreated coal. On the other hand, only one Fe-bearing mineral, (pyrite) was found in the washed coal. Effect of the physical separation is also demonstrated in FT-IR spectra, where the peak at 1040 cm−1 representing the silicate component in the untreated sample is not detectable in the washed coal sample. Presence of extractive organic substances, i.e. humic acids and tetracyclic diterpane (16α(H)-phyllocladane), in the hydrocyclone products is also evidenced. It was confirmed that the isolated diterpenoic compound is attendant in the washed product with the lowest ash content and it is assimilated with the organic part of coal. Surprisingly, humic acids were found in the highest concentration in the slurry that has the highest content of ash (63.14%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号