首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
电驱可控震源复杂的工况环境对驱动电机的性能提出了较高的要求。针对可控震源在行驶和激振工况下的动力需求,开展了驱动电机动力参数匹配设计,确定了驱动电机的主要设计参数;建立了驱动电机的二维有限元模型,采用子域法研究了电机在空载、额定工况下的磁通密度特性和谐波幅值,分析了电机磁通谐波畸变规律;开展了电机气隙长度优化设计以及电机转子结构的正交优化试验,得到了转子最优结构参数,并研制了电机样机。结果表明:在电机隔磁桥、永磁体与转子边缘之间区域的磁通密度波形畸变严重;永磁体与转子边缘之间区域的高次谐波对电机的影响较大,其3次谐波在基波中的占比高达83%;优化后电机效率可达96.8%。研究结果为电驱可控震源的优化提供了参考。  相似文献   

2.
某纯电动汽车在粗糙路面上以60 km/h匀速行驶时,主观评价会有严重的压耳感.经过和目标值对比,以及对音频的滤波回放,确认30 Hz和40 Hz峰值是引起主观压耳感的主要原因.该电动车为后轴驱动,电驱动总成通过三点悬置安装在后副车架上,而后副车架与车身通过4个衬套连接,形成二级隔振系统.通过分层级传递路径分析,确认30...  相似文献   

3.
Creep Groan(吱嘎声)噪声是一种频率小于1 000 Hz的低频噪声,当自动挡车型采用D挡、R挡慢慢松开刹车起步或低速轻踩刹车慢慢停止时都容易产生该噪声。以前Creep Groan噪声主要通过修改摩擦片的摩擦材料进行优化,很少通过分析和改进Creep Groan噪声传递路径进行优化。主要通过相干性、ODS、NTF分析,确定Creep Groan噪声主要传递路径为车辆前悬挂系统,关键节点为车辆前悬挂系统中减震器的Top mount。通过降低Top mount硬度使Creep Groan噪声改善明显,达到可接受主观驾评。  相似文献   

4.
针对某SRV车,建立可靠的白车身有限元模型、声腔边界元模型和有限元边界元耦合模型;在计算出场点声压频率响应的基础上,对峰值频率处进行面板贡献量分析,找出产生峰值声压的主要来源;基于模态修改法优化主要振动区域腹部节点的速度来降低车内噪声。  相似文献   

5.
阐述排气系统引起的车内NVH问题。通过运用排气系统振动噪声分离手段,得出某样车3900r/min轰鸣噪声是排气系统结构噪声引起的。分别应用试验模态分析和有限元模态分析技术对排气系统模态参数进行识别,发现该轰鸣声是由于排气系统热端和冷端模态耦合引起。同时应用有限元模态分析技术对该问题进行优化分析,得出在排气歧管和发动机缸体之间增加加强支架和更改排气系统冷端球绞位置的方案。最后通过试验验证,该方案能够很好的解决车内轰鸣噪声问题。  相似文献   

6.
在传递扭矩的瞬时突变工况下,纯电动汽车传动系统和驱动电机的结构特性容易引起整车产生冲击、噪声与抖动等问题,严重降低驾乘舒适性.系统性阐述某纯电动汽车加速撞击异响问题的分析解决过程,建立基于电驱动系统试验台架的排查方法,根据齿轮啮合间隙理论和整车扭矩控制机理,提出具体的工程控制措施与方案,优化电机扭矩过零策略,通过实车实...  相似文献   

7.
针对某矿车驾驶室,运用矩阵求逆法计算驾驶室悬置车身侧的力,并基于耦合间接边界元法求解驾驶室耦合系统在该激励下的驾驶员右耳声压,找出关注频率。在该频率下进行面板贡献量分析,找出对场点声压主要贡献的面板。在此基础上,通过形貌优化提高顶棚的第1阶固有频率和在主要正贡献面板上加动力吸振器的方法有效地降低驾驶员右耳在80 Hz处的峰值声压,达12.82 dB。  相似文献   

8.
分析了电梯噪声产生的原因,提出了电梯噪声测试方法,进一步提出了控制电梯噪声措施以及具体实施的方法.实践表明这些措施和方法对降低电梯噪声对周边环境影响效果明显,为进一步研究电梯噪声问题奠定了基础.  相似文献   

9.
针对某特种车车内噪声水平较高问题,建立车身结构与声固耦合有限元分析模型,并进行车身振动频响分析和车内声压响应分析;通过仿真结果与实车道路试验结果对比,验证车身结构和声固耦合有限元模型的有效性;利用耦合声学边界元法进行驾驶室内部声学特性研究,识别出不同工况的主要噪声频率;并对影响车内噪声的车身板件进行声学贡献分析,找到对车内声压贡献最大的板件;最后对声学贡献大的板件粘贴阻尼材料来对车内进行降噪,车内噪声得到较为明显改善。  相似文献   

10.
为了降低车室低频噪声,采用对声学贡献较大的车室地板、后地板、前围板、顶棚、前车门内板及后车门内板的厚度参数为因子,以车身质量、车身模态频率、驾驶员头部处声压峰值和声压均方根值为响应,采用最优拉丁超立方试验设计方法采集样本数据进行因子空间设计。利用径向基神经网络方法,建立了4个响应关于6个因子的误差小、精度高的近似模型,并对所建立的近似模型进行误差分析。以驾驶员头部处声压峰值最小为目标函数,板件厚度参数为自变量,驾驶员头部处声压均方根值、车身质量和车身模态频率为约束条件。采用自适应模拟退火算法对板件厚度进行优化设计,其优化结果表明,驾驶员头部处最大声压峰值所在的频率158 Hz处的声压降低了4.45 d B,134 Hz处的声压峰值降低了5.47 d B,在其他声压峰值较高的频率处,测点声压均有不同程度降低,说明在满足约束条件同时,通过优化有效地降低车室空腔噪声,提高车辆的声学舒适性。  相似文献   

11.
汽车制动噪声是影响车辆驾乘舒适性的重要因素,而制动低频颤鸣问题常常发在低速行驶的工况,由于环境背景噪声较小,容易被市场用户投诉与抱怨,因针对该问题的工程改善方案涉及较多控制因素及相关零部件,所以一直是汽车制动舒适性开发的重点与难点。以某SUV(Sport Utility Vehicle)车型蠕行颤鸣问题的测试排查分析过程为例,系统地阐述制动颤鸣现象发生的原理,给出工程控制的措施,提出轮辋法兰安装面与车轮螺栓预紧方式是控制制动低频噪声的关键因素之一,并通过制动盘安装连接方式的优化,实车验证了改进方案的有效性,这对于提升制动NVH(Noise Vibration Harshness)性能工程开发具有较重要的借鉴与指导意义。  相似文献   

12.
针对自主车,提出了高速公路交通环境下的一种快速路径预测算法.通过引入一个车辆运动学预瞄模型,对自主车未来的行驶位置进行估计.并结合所提路径算法给出的目标道路位置,计算预测误差.设计了基于预测误差的最优反馈控制器用于实现路径跟踪.CarSim+Simulink仿真结果表明:所提最有控制器保证自主车在速度v<16 m/s时...  相似文献   

13.
针对某空调压缩机的噪声问题,开展系统的噪声控制研究。根据空调压缩机噪声产生机理,对压缩机进行噪声测试分析,针对其噪声特性开展噪声控制方案设计;对三种不同降噪方案进行SEA声学仿真分析,选择降噪方案二为最优降噪方案并实施,测试结果表明空调机组各测点的实际降噪量达3 d B(A)~6 d B(A),其中,靠近压缩机的测点2降噪量为5.3 d B(A),表明降噪方案有效。  相似文献   

14.
车内噪声控制中的结构-声场耦合模态分析方法   总被引:4,自引:0,他引:4  
车内噪声中的结构噪声是由车身结构振动与车内空腔声场的耦合产生的,传统的振动模态分析方法在针对车内噪声控制时由于没有考虑这种耦合特性而存在很大的局限性。本文在介绍结构-声场耦合模态分析方法的原理基础上,研究了该方法在车内噪声测试分析与控制中的应用与工程实现,并开发出了相应的测试分析系统。该系统在某车车内噪声控制中取得了明显的降噪效果。  相似文献   

15.
燃料电池轿车车内后部噪声实验分析与控制   总被引:1,自引:0,他引:1  
通过对车内后部噪声的测试,分析了车内后部噪声的分布状况,对试验数据进行频谱分析处理了解车内后部噪声的主要频率成分并结合振动试验判断了主要噪声源;通过隔声与吸声措施提高了后排座隔板和衣帽架对中高频噪声的隔声量,改善了乘坐室后部噪声的强度与频率特性,提高了乘座舒适性。  相似文献   

16.
变电站噪声会对周边环境产生影响,针对如何降低其影响,开发了“变电站环境噪声仿真分析及优化控制系统”软件,然后通过对噪声源、建筑物、敏感点、树木以及其它障碍物的整体仿真分析计算,优化新建变电站的规划设计方案和运行变电站的噪声治理方案。该方法能够提高噪声控制效果,降低工程造价,避免噪声控制设计过程中的随意性和盲目性,具有一定的推广应用价值。  相似文献   

17.
以轮轨表面粗糙度为激励,利用车辆-轨道多刚体耦合振动模型计算轮轨作用力.利用有限元理论建立轮对的有限元分析模型,以轮轨作用力为激励进行轮对的振动频响分析.以振动响应分析结果作为边界条件,利用边界元理论建立轮对边界元声学分析模型,对轮对振动声学特性进行了计算分析.其结果与公认的模型和软件的计算结果相比具有较好的一致性,证明本文做法的正确性.  相似文献   

18.
为掌握110 kV城市变电站的噪声污染水平,对正常运行的某110 kV变电站的主变及站界噪声进行系统测量,并对测试结果进行计算和分析。结果显示110 kV变电站的噪声频谱峰值主要集中在100 Hz~2 000 Hz的范围内,噪声以电磁噪声和冷却系统风机噪声为主;站界噪声测试结果显示大部分测点的昼夜噪声值均严重超标。对变电站噪声的污染特性、频谱特性和衰减规律进行分析研究,借助噪声衰减的理论,提出使变电站站界噪声达标的主要方法,为变电站设计和噪声控制提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号