共查询到18条相似文献,搜索用时 93 毫秒
1.
催化热解目前逐渐成为生物质转化利用技术的主要研究方向,相比常规热解,催化热解可以对生物油进行有效提质并且定向产生高值化产品。本文通过对近年来新兴的催化剂进行综述,包括分子筛类催化剂(ZSM-5、HZSM-5、USY等)、炭基催化剂、金属氧化物、白云石、整体式催化剂等,了解了目前生物质热解利用中催化剂领域内的最新研究进展。文中指出,良好的催化剂是保证反应顺利进行的关键,不同催化剂定向产生的高值化产品也有所不同,因此催化剂的正确选择对于生物油的提质起着重大作用。根据目前领域内所研究内容,本文还对各类催化剂的优缺点、产物特性进行了详细比较,并针对该技术现有问题提出了部分建议并进行展望,为以后生物质热解领域催化剂的研究提供了重要的理论依据。 相似文献
2.
快速热解是生物质高效转化利用的重要方法之一,然而其目标产物生物油因含氧量高、组分复杂等不足而难以直接利用。通过在热解体系中引入碱土金属氧化物基催化剂,可以将热解产物中的氧元素以CO2和H2O等方式脱除,从而实现生物油品质的提升。总结了典型碱土金属氧化物基催化剂对生物质催化热解过程中发生的酮基化、羟醛缩合、开环和侧链断裂反应及机理,讨论了催化剂类型(CaO、MgO、基于碱土金属氧化物的分子筛和活性炭等)、生物质原料、温度、催化剂用量、停留时间、催化方式、催化剂失活等因素对生物油产率与品质的影响,并对生物质催化热解制备高品质生物油及其应用进行了展望。 相似文献
3.
4.
5.
生物质热解制备高品质生物油研究进展 总被引:1,自引:0,他引:1
生物质热解制备生物油是能源富集的有效途径,是实现碳闭路循环的重要方式,作为一种环境友好型技术受到广泛关注和研究。然而,生物质热解反应过程复杂,生成的生物油热值低、含氧量高及强酸性等特点,制约了生物油的分离提纯、制备合成气以及燃烧等方面的应用,生物油品质的提升迫在眉睫。本文从生物质三组分、原料预处理、反应参数、催化剂、反应器等方面综述了影响生物油品质的主要因素,分析了生物油的特点,不同预处理下生物质特性的变化与生物油的关系,催化剂参与的热解行为对提升生物油品质的导向作用以及常用生物质热解反应器的特点,并对影响生物油品质的主要因素进行了总结。最后,针对影响制备高品质生物油的诸多因素提出建议,以期为制备高品质生物油提供参考和借鉴。 相似文献
6.
基于国家碳中和背景,生物质作为一种重要的可再生资源,其有效利用至关重要。生物质热解制油具有规模化潜力,成为目前生物质利用的主要方式。生物质热解技术按照液化方式不同分为直接液化和间接液化,但生物质直接液化所得生物油组分不稳定,间接液化所得生物油品质取决于反应器型式、反应温度及催化剂类型等,不同制备方法的生物油品质差别较大,生物油改性提质成为其实际应用的必要条件。归纳比较了生物质热解过程中提高生物油品质的催化剂类型,着重综述了原生物油分离为轻质组分和重质组分后分别改性提质的技术路线,可转化为燃气、燃油甚至化学品,实现生物油的高值化。针对轻质油组分的改性方法有水蒸气重整制氢、催化裂解、加氢脱氧、催化酯化等,催化剂类型以分子筛及贵金属为主;而重质油组分水含量低、黏性大,相关提质研究较少,目前报道以加氢、裂化、酯化、添加溶剂、气化为主。生物油提质改性方法中,催化剂、氢源、耗能是限制其规模化、工业化应用的主要原因,降低催化剂成本及提高催化剂寿命、减少氢源使用或利用低成本氢源、简化工艺及降低反应温度是生物油提质技术发展方向。 相似文献
7.
生物质是唯一一种可再生碳源,其高效利用是解决能源与环境问题的纽带。近年来,基于化石能源的塑料制品使用和废弃量快速增加,其难于自然降解,对环境造成严重威胁。生物质与塑料的催化共热解技术能够得到选择性更高的产品,进而提升高附加值产物的产率和品质,是生物质与塑料规模化利用的重要方向。本文从生物质与塑料高效转化的角度出发,梳理了生物质与塑料催化共热解技术研究进展,对生物质与塑料共热解机理、ZSM-5基催化剂共热解、过渡金属基催化剂共热解、碱/碱土金属催化剂共热解、多催化剂共热解等不同种类的催化共热解研究前沿进行了综述,并对比了原位催化和非原位催化的共热解方式,展望了生物质与塑料催化共热解的主要技术和发展方向,以期为生物质与塑料的高效协同转化提供方法参考和研究思路。 相似文献
8.
生物质热解技术制备生物油研究现状及展望 总被引:1,自引:0,他引:1
生物质能源作为可再生能源的重要组成部分,其综合高效利用在能源替代与补充、保护生态环境等方面具有重要的战略意义。该技术很大程度上缓解当今社会的能源危机以及环境污染,是人类开发可再生资源的一种非常有效的途径。 相似文献
9.
以HZSM-5分子筛为催化剂,进行低温等离子体(NTP)协同生物质真空热解-HZSM-5催化制备精制生物油的试验,采用响应面法对NTP协同生物质热解-催化制备精制生物油的工艺参数进行了分析和优化,考察了生物质质量与催化剂高度(质高比)、反应温度和体系压力对精制生物油收率的影响,三者对精制生物油的收率具有显著影响,且交互作用显著.对最优工艺条件下制备的精制生物油元素组成、高位热值(High heating value,HHV)、官能团构成和分子组分进行分析,以期为生物质能源高效转化利用提供试验基础据和理论依据. 相似文献
10.
11.
微波热解是一种高效的生物质转化利用技术,具有独特的热效应和非热效应,可将生物质转化为液体燃料和化学品,能有效缓解能源压力,减少环境污染。本文着重探讨了生物质原料特性、微波吸收剂、催化剂对生物质微波热解制备高品质液体燃料和化学品的影响。原料特性的影响主要从生物质的水分含量、灰分含量和有效氢碳比三方面展开论述,催化剂包括金属盐、金属氧化物、ZSM-5、微波驱动型催化剂以及其他一些催化剂,如HY、MCM-41和碳基催化剂等。简述了生物质的微波热解特性、液体燃料的组成以及转化机理,并对现存的热解机理复杂、产物复杂不稳定、目标产物选择性差、催化剂易结焦失活、重复性差等问题进行了分析,展望了未来的发展方向,以期为生物质的高效转化利用提供依据。 相似文献
12.
生物质微波热解具有反应速率快、能量利用率高等优点,但存在产物选择性不高、品质较低等问题,结合催化剂使用,具有制备高值产品的应用潜力。本文对生物质微波催化热解的研究进展进行了综述,介绍了微波催化热解的机理、反应体系、热解产物等对制备高附加值产品的影响。简述了微波催化热解的机理,从原料、微波吸收剂、催化剂三个方面对微波催化热解体系进行讨论,介绍了不同种类原料对产物产率的差异、不同催化剂对于产物选择性的区别。分析了不同提高产物产率和选择性的方法,指出优化和改善催化剂特性使其具备复合功能、开发大型微波反应器、产物定向富集和转化是目前仍需解决的问题。为生产富烃生物油、高性能生物炭等产品,进而推广到工业应用提供参考。 相似文献
13.
Levoglucosenone (LGO) has great applicable value in the field of organic synthesis. The rapid pyrolysis of biomass to produce LGO is a research hotspot in the development and utilization of biomass energy. The application of LGO is mainly limited by its yield: first, it is difficult to prepare LGO by chemical synthesis, and second, the content of LGO in the products obtained by conventional pyrolysis biomass is extremely low, making LGO challenge to produce in large quantities. Catalytic pyrolysis can significantly increase the yield of LGO. Currently, various catalysts which used to prepare LGO, including liquid acid, solid acid, metal chloride and ionic liquid, have achieved evident results, but the effects are individually different. The difference in catalytic effect of various catalysts are analyzed, and a brief conclusion for the challenge in this topic is provided. 相似文献
14.
左旋葡聚糖酮(LGO)在有机合成领域有巨大的应用价值,快速热解生物质制取左旋葡聚糖酮是生物质能开发与利用的研究热点。目前LGO的应用主要受到其产量的限制:一是没有较好的化学合成方法,二是常规热解生物质得到的产物中左旋葡聚糖酮的含量极低,使得LGO难以大量生产。催化热解可以显著提高左旋葡聚糖酮的产率,目前用于催化热解生物质制取左旋葡聚糖酮的各类催化剂,包括液体酸、固体酸、金属氯化物、离子液体等均取得了一定的成果,但效果差异明显,因此分析了不同催化剂间的优势与劣势,并对以后的工作进行了展望。 相似文献
15.
Changwei HU Yu YANG Jia LUO Pan PAN Dongmei TONG Guiying LI 《Frontiers of Chemical Science and Engineering》2011,5(2):188
Biomass is considered as a renewable and alternative resource for the production of fuels and chemicals, since it is the only carbon and hydrogen containing resource that we can find in the world except for fossil resources, capable of being converted to hydrocarbons. The pyrolytic liquefaction of biomass is a promising way to convert biomass to useful products. This paper briefly surveys the present status of the direct catalytic pyrolysis for the liquefaction of biomass. The direct use of catalysts could decrease the pyrolysis temperature, increase the conversion of biomass and the yield of bio-oil, and change the distribution of the pyrolytic liquid products then improve the quality of the bio-oil obtained. The fact that biomass is in solid state present great challenges for its conversion and for the effective use of catalysts due to the bad heat transfer characteristics and bad mass transfer properties. These barriers appeal for the development of a new catalyst and new catalytic process as well as the integration of both. Process design and process intensification are of significant importance in the catalytic conversion of biomass. 相似文献
16.
生物质催化热解获得生物油等高质产品是最有前途替代传统化石能源的方法之一,但在热解过程中存在着严重的催化剂失活问题,其中积炭是导致催化剂失活的最主要因素。本文对近年来生物质催化热解领域的催化剂积炭问题进行综述,重点介绍催化剂积炭失活原因及表征方法、积炭的影响因素分析(催化剂结构、催化剂酸性与反应温度)、抑制催化剂积炭的方法 (催化剂改性、高压反应条件等)以及积炭催化剂再生方法 (氧化灼烧再生、臭氧低温再生、非热等离子体再生等),并介绍了近年来新兴的微波催化热解技术对催化剂积炭的抑制和消除作用,然后针对该领域目前所面临的困难和发展方向进行展望,以期为生物质催化热解过程中催化剂积炭问题研究提供理论基础。 相似文献
17.
生物质热解气是一种高热值的可燃气体,具有重要的开发利用价值,但由于其复杂的组分,多焦油和CO2、CH4等成分对热解气化过程以及相关的设备都有较大的危害,而冷凝下来形成的黏稠液体易造成管道堵塞,直接燃用产生的炭黑会造成环境污染,成为制约热解气进一步开发利用的主要因素。本文分析了热解气催化重整制取费-托合成气的可行性,分别介绍了连续和分段式热解-催化重整设备,镍基、钙基、铁基、碱金属类、生物炭等催化剂,以及热解气分离提纯技术等方面的研究现状,分析了目前热解气制取费-托合成气研究中存在的催化重整设备规格不统一、缺乏相关的行业标准、不同催化剂与催化剂助剂的催化重整效果、机理尚不明确等问题,并提出了采用分段式热解-催化重整设备,并以炭化产品生物炭作为催化重整催化剂的未来研究方向,开辟了生物质炭化热解气开发利用的新途径。 相似文献
18.
使用自主研发的流化床热解反应器对生物质热解制油进行实验研究,通过对不同实验温度450、500、525、550、580、610℃下得到的目标产物进行分析,得到了反应温度对生物油产率的影响规律。实验表明:550℃时,最大液体产率为42.5%(质量);实验得到的不可冷凝气体的组分以CO、CO2、CH4和H2为主,气相产物产率约为37.7%(质量)。在实验基础上,利用Aspen Plus流程模拟软件,建立了生物质热解制油工艺模拟流程,模拟分析了热解温度对生物油产率的影响,结果表明该模型能准确模拟实际热解过程,具有较好的适用性和可靠性。 相似文献