首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
新型碳材料因其独特的物理化学性质而被广泛用于功能涂料中,主要介绍了碳纳米管、石墨烯、碳纤维等新型碳材料在防腐、导电、防火、隐身等功能涂料中的研究现状,指出了新型碳材料在功能涂料中进一步应用的要求。  相似文献   

2.
杨蒙蒙  姚卫棠 《化工进展》2021,40(3):1495-1505
钾离子电池因其能量密度高、钾储量丰富、成本低等优势而成为当前储能器件领域一个新的研究热点。钾离子可以在商品化石墨负极材料中嵌入与脱出,这对于钾离子电池未来的产业化发展具有重要意义。但目前石墨负极存在体积膨胀率较大、容量衰减快、倍率性能低等问题。近年来,为寻找适宜嵌钾的材料与抑制膨胀的方法,越来越多的电极材料体系被开发出来。其中生物质碳材料因制备工艺简单、成本低廉和环保等优点被广泛研究。本文总结了钾离子电池生物质碳材料的最新研究进展;分析了存在于碳基材料的两种储钾机制及各自对电化学性能的影响,并对一些表现出优异电化学性能的生物质碳材料的制备方法及电化学性能做出扼要综述;在此基础上,对钾离子电池的下一步研究进行展望与总结。  相似文献   

3.
多孔碳材料因其具有优良的物理化学性质,在能源、环境和催化等领域备受关注.实现多孔碳材料的结构与形貌组成可控可调,降低制备成本是它的研究重点.金属有机骨架材料(MOF)是金属离子和有机物通过配位键形成的一类新型多孔材料,在储能、催化和分离中都有广泛的应用.使用MOF作为碳的前驱体或模板制备碳材料,可以很好地继承MOF固有...  相似文献   

4.
碳作为铅酸电池集流体的研究进展   总被引:1,自引:0,他引:1  
轻质材料替代传统板栅是提高铅酸电池比能量的关键,碳材料因其具有导电性好、密度小、耐腐蚀等独特的物理化学性能受到关注。综述了碳材料作为铅酸电池活性材料载体和集流体方面的研究现状,着重介绍了网状玻璃态碳、石墨/碳泡沫等碳材料在此方面的研究进展,并展望了其在铅酸电池中的应用前景。  相似文献   

5.
刘贵  宁平  李凯  汤立红  宋辛  王驰 《化工进展》2015,34(7):1905-1912
介质阻挡放电等离子体因其高效、经济和易操作等优点, 使得其在材料表面改性方面得到了广泛的应用, 同时表现出良好的应用前景。碳基材料由于其许多良好的物化性能, 使得其在很多领域都得到了很好的应用。而经DBD改性后的碳基材料表现出更好的物化性能, 应用更加广泛。主要综述了DBD在改性碳基材料方面的研究现状, 包括活性基团的引入, DBD改性对碳基材料界面结合能、吸附性能、物理结构及其对负载组分分散度的影响。指出改性过程中仍然存在的许多不够完善之处, 提出许多需要进一步深入研究的问题, 如DBD改性对碳基材料物化性能影响的机理研究, 并展望了DBD改性碳基材料技术未来的发展前景。  相似文献   

6.
镍钴双氢氧化物具有优异的赝电容性能,但存在充放电过程中因其活性位点利用率较低、导电性较差等问题而导致电容量不能完全释放.本文构建了生物质黄桃衍生的三维网格结构碳材料并用于调控二元镍钴双氢氧化物的超级电容性能.结果表明,二元镍钴双氢氧化物/生物质黄桃衍生多孔碳复合材料显著提高了超级电容器的赝电容容量和倍率性能.研究表明,...  相似文献   

7.
染料敏化太阳能电池因其价格和性能的优势得到了广泛关注,作为太阳电池的重要组成部分,电池性能受其影响较大。重点介绍了铂对电极、碳对电极及复合对电极等几种对电极材料,并指出了未来可能的研究方向。  相似文献   

8.
总结了国内外采用表面活性剂、造粒、表面涂层等技术将传统碳材料(主要是鳞片石墨)改性优化后应用于耐火浇注料的研究进展,阐述了其工艺特点及目前存在的问题.还介绍了近年来微/纳米碳材料应用于含碳耐火浇注料的研究现状,分析了阻碍微/纳米碳材料应用于含碳耐火浇注料的原因.  相似文献   

9.
碳质材料是一种吸附抗生素污染物的重要材料,在饮用水源净化领域中的应用十分广泛。综述了活性炭、碳纳米管、石墨烯和生物质炭等碳质材料吸附饮用水源中抗生素的研究进展,比较了其吸附特点,对碳质材料吸附抗生素的影响因素(pH、温度、离子强度等)、吸附等温线及动力学三个方面也进行了详细阐述。在此基础上,分析了当前碳质材料吸附抗生素研究工作中存在的问题,对今后碳质材料吸附抗生素研究作了展望。  相似文献   

10.
卢贝丽  刘杏  尹铸  黄彪 《化工进展》2021,40(2):778-788
苯胺是重要的化工原料和合成中间体,通过硝基苯的催化还原反应可以方便地制备苯胺类化合物。多孔碳材料因其高比表面积、发达的孔隙结构和容易回收等特点在催化领域越来越受到重视,然而其应用受到自身活性位点缺乏和化学惰性的限制。杂原子掺杂可以增强碳材料的表面极性,调节电子结构,改善其催化性能,可作为硝基苯催化还原反应的有效催化剂。本文对近年来掺杂多孔碳材料在硝基苯催化还原反应中的研究进展进行了总结。本文概述了氮掺杂型多孔碳材料、共掺杂型多孔碳材料、负载贵金属的掺杂多孔碳材料和负载廉价金属的掺杂多孔碳材料这4种主要的掺杂多孔碳材料的制备方法,并详细介绍了不同掺杂多孔碳材料在催化硝基苯催化还原反应时的催化性能、可能的催化活性位点以及催化机理。最后,指出目前掺杂多孔碳材料催化硝基苯还原还需要解决反应选择性、催化剂催化活性和生产成本等问题,以生物质为前体,开发共掺杂型和二元双金属负载的掺杂多孔碳材料是未来的重要发展方向之一。  相似文献   

11.
能源和环境问题是人类可持续发展的关键问题,超级电容器作为一种新型的储能设备备受关注。碳材料作为超级电容器的电极材料,因具有良好的导电性、较大的比表面积及高稳定性被广泛应用。其中,以生物质作为前驱体制备所得的碳材料具有具有成本较低、来源广泛、形式多样等特点,同时此类材料表面常含有大量杂原子基团,大大提升了其相应的电容性能,因此受到了人们的广泛关注。本文介绍了部分以生物质为前驱体制备碳材料及其电容性能研究的工作。  相似文献   

12.
多孔炭材料具有导电性好、结构稳定、资源丰富、价格低廉的天然优势,既可直接作为电极材料,构建炭基电化学储能器件,又可与非炭电活性材料复合,起到传输电子、缓冲体积膨胀及调节界面反应的作用,在电化学储能器件中一直发挥着不可或缺的作用。结合本文作者课题组的研究工作,本文总结了多孔炭制备及孔结构和形貌的调控方法,分析了各方法的优缺点;并以超级电容器、锂离子/钠离子电池和锂硫电池为代表,阐述了多孔炭材料在电化学储能领域的作用及应用研究现状,讨论了电化学储能器件对多孔炭材料的结构与性能要求,指出了多孔炭在电化学储能应用中存在的局限性,并对多孔炭在这些储能领域的研究和发展趋势做出展望。  相似文献   

13.
田杜  刘奔  李奇  王朋  钟敏  胡成龙  陈韶云  纪红兵 《化工进展》2021,40(6):3330-3345
从聚苯胺(polyaniline, PANI)的结构特征和导电机理出发,详细叙述了一维有序PANI纳米阵列的优点及各种制备方法,指出了PANI纳米阵列作为超级电容器电极材料的优势。根据电极材料分类,重点综述了PANI阵列结构基与导电高分子材料、碳材料、金属氧化物复合作为超级电容器电极材料的应用情况;讨论了这些电极材料的结构特点、制备方法、提高电化学储能性的机理及上述研究中存在的问题;最后根据存在的问题,提出进一步优化PANI阵列结构基电极材料电化学性能的制备方法与策略,并对未来PANI阵列结构基电极材料在超级电容器的发展前景进行了展望。  相似文献   

14.
化石燃料的枯竭、环境污染以及清洁能源输出不连续性和不稳定性是目前社会电力发展需求中的主要问题,在各种电化学储能技术中,超级电容器因具有充放电速度快、使用寿命长、功率密度大而被广泛研究。在众多影响超级电容器的因素中,电极材料对其整体性能起到决定性作用。综述了超级电容器用电极材料,如碳基材料、导电聚合物、金属氧化物和氢氧化物、金属硫化物的储能机理及其研究进展。最后,对目前电极材料研究所面临的挑战及未来发展方向进行了展望。  相似文献   

15.
江浩  李春忠 《化工学报》2015,66(8):2872-2877
超级电容器和锂离子电池等储能设备的研究和开发日益受到人们的关注。对于超级电容器和锂离子电池等储能设备,其电化学性能主要取决于电极材料,因此高效储能材料的制备成为开发高效储能设备的关键。本文主要介绍了多级结构过渡金属氧化物基电极材料的制备及性能,重点阐述了本实验室近年来在研制高性能超级电容器和锂离子电池方面的相关工作:基于表面化学反应控制制备多级结构金属氧化物、金属氢氧化物/碳嵌入式纳米杂化物以及多种三维结构的多元复合电极材料,表现出优异的电化学性能。  相似文献   

16.
郭冠伦  刘锐  余洋洋  汪云 《化工进展》2022,41(2):781-790
塑料制品的过度使用,导致了严重的环境问题。将废旧塑料回收并转化为高附加值的碳材料并用于超级电容器等储能装置有着重要的意义,能够有效地降低环境污染并节约能源。本文首先对超级电容器的应用情况和塑料的使用以及回收处理现状进行了简单叙述,介绍了常见的废弃塑料处理方法、超级电容器的储能特点以及利用废弃塑料制备超级电容器碳材料的潜在价值;接着介绍了多孔碳电极材料的制备方法,对不同的制备方法的具体要求及其优缺点进行了简单分析;随后介绍了几种生活中常见的塑料,按照这些塑料的种类,分别对这些常见塑料回收用作超级电容器碳材料的研究现状进行了详细概述;最后对目前的研究现状进行总结,并对未来的研究方向进行展望。将废弃塑料回收并转化为超级电容器用活性碳材料,是一种新型的废弃塑料回收再利用的有效手段,能够有效地解决白色污染问题。  相似文献   

17.
多孔炭在电化学储能器件中具有不可或缺的作用。本文主要介绍了富氧多孔炭材料的物理化学特性、表面含氧官能团的种类及表征方法;总结了富氧多孔炭常见的合成方法并分析了各种方法的优缺点;以超级电容器和锂/钠离子电池为例,阐述了近年来富氧多孔炭材料在储能应用方面的研究进展,探讨了含氧官能团在储能过程中的作用机理;指出了富氧多孔炭应用于电极材料时高比容量与高导电性能相互制约的问题,提出理性设计多孔炭结构中含氧官能团的类型及数量,可以在保持多孔炭电化学稳定性的同时,为多孔炭提供丰富的氧化还原活性位,提高其与电解质的亲和性,从而提升储能器件的能量密度;并展望了含氧官能团原位表征技术的开发与材料先进结构组分的设计等富氧多孔炭储能电极的未来发展方向。  相似文献   

18.
高性能碳基储能材料的设计、合成与应用   总被引:1,自引:0,他引:1       下载免费PDF全文
电化学储能器件的性能很大程度上决定于其电极材料。碳材料具有来源广泛、化学稳定性好、易于调控、环境友好等优点,被广泛应用于各类能量存储系统,但仍存在能量密度低、倍率性能差等问题。本文从碳材料孔结构调控、杂原子掺杂、与金属氧化物复合三个角度,综述了构建高性能碳基储能材料的设计合成策略,介绍了其在锂/钠离子二次电池、超级电容器等领域的研究进展,对几种方法策略的优缺点进行了总结,并对未来的研究方向进行了展望。本文对高性能碳基储能电极材料的设计开发具有积极意义。  相似文献   

19.
木质素是一种具有三维网状分子结构、含有大量芳香基团和高含碳量等特点的天然高分子,其在制备多孔炭领域具有巨大潜力。多孔炭在催化剂和能源储存领域具有极大的应用前景。以来源于制浆造纸和生物炼制行业的副产物工业木质素作为原料制备多孔炭应用于能源储存、吸附、催化剂载体等领域,可实现工业木质素在碳基功能材料领域的高附加值循环再利用。本文详细综述了目前木质素多孔炭的常用制备方法和微结构特性的调控方法,总结归纳了各制备方法的主要特点以及影响木质素多孔炭微结构与性能的关键因素;重点综述了近些年对木质素多孔炭孔道结构调控方面的研究,归纳了孔调控的方法;此外,总结了木质素多孔炭在超级电容器、锂离子电池、吸附剂和催化剂载体领域中的应用研究现状,讨论了催化和储能材料对木质素多孔炭的微结构特性要求。总结并展望了木质素多孔炭在制备与应用中面临的机遇和挑战。  相似文献   

20.
Supercapacitors are a kind of novel energy storage devices with long cycle stability and high power density. Electrode materials selection is one of the key factors that affect the properties of supercapacitors. Biomass-derived electrode materials – being low cost, renewable and environmentally friendly – are therefore attracting researchers’ attention. In this work, we adopted a simple process of carbonization and activation with rice plant soot, a common biomass material, as carbon source, and finally obtained the nanoscale porous carbon electrode (NPCE) materials. Then, the electrochemical properties of the as-prepared NPCE materials were tested in 6 M KOH, and the results indicated that the specific capacitance could reach 216?Fg?1. Therefore, this low-cost, highly efficient technique is a significant milepost towards environmentally sustainable and commercially feasible fabrication of carbon electrode materials from biomass sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号