首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiconductor nanowires are expected to be important components in future nano-electronics and photonics. Already a wide range of applications has been realized, such as high-performance field-effect transistors, bio/chemical sensors, diode logics and single-nanowire lasers. As nanowires have small cross-sections and large surface-to-bulk ratios, their properties can be significantly influenced by individual atomic-scale structural features, and they can have properties or even atomic arrangements with no bulk counterparts. Hence, experimental methods capable of directly addressing the atomic-scale structure of nanowires are highly desirable. One such method is scanning tunnelling microscopy (STM), which, by direct imaging of the atomic and electronic structure of surfaces has revolutionized the perception of nanoscale objects and low-dimensional systems. Here we demonstrate how combining STM with an embedding scheme allows us to image the interior of semiconductor nanowires with atomic resolution. Defect structures such as planar twin segments and single-atom impurities are imaged inside a GaAs nanowire. Further, we image an intriguing GaAs nanowire that is separated into two distinct nanocrystallites along the growth direction of the wire.  相似文献   

2.
Liu L  Rim KT  Eom D  Heinz TF  Flynn GW 《Nano letters》2008,8(7):1872-1878
The demand for better understanding of the mechanism of soot formation is driven by the negative environmental and health impact brought about by the burning of fossil fuels. While soot particles accumulate most of their mass from surface reactions, the mechanism for surface growth has so far been characterized primarily by measurements of the kinetics. Here we provide atomic-scale scanning tunneling microscope images of carbon growth by chemistry similar to that of importance in soot formation. At a temperature of 625 K, exposure of the surface of highly ordered pyrolytic graphite to 1 Langmuir of acetylene leads to the formation of both graphitic and amorphous carbonaceous material at the edges of nanoscale pits. Given the similarity of the electronic structure at these graphite defect sites to that of soot material growing in flames at higher temperatures, the present studies shed light on the mechanism for soot growth. These experiments also suggest that healing of defect sites in graphene nanostructures, which are of considerable interest as novel electronic devices, should be possible at modest surface temperatures by exposure of defected graphene to unsaturated hydrocarbons.  相似文献   

3.
We investigate the radiative properties of plasmonic core-shell nanowire resonators and, using boundary element method calculations, demonstrate enhanced radiative decay rate by up to 3500 times in nanoscale compound semiconductor/metal cavities. Calculation of the local density of optical states enables identification of new types of modes in cavities with mode volumes on the order of 10(-4)(λ/n)(3). These modes dramatically enhance the radiative decay rate and significantly modify the polarization of far-field emission.  相似文献   

4.
Using model ionic systems and the recently proposed theory of dynamical response at close approach (Kantorovich and Trevethan 2004 Phys.?Rev.?Lett. 93 236102) in non-contact atomic force microscopy (NC-AFM), we present the results of calculations performed to investigate the formation of atomic scale contrast in dissipation images. The accessible energy states and barriers of the microscopic tip-surface system are determined as a function of tip position above the surface. These are then used along with typical experimental parameters to investigate the dynamical response of the system and mechanisms of atomic scale contrast. We show how the damping signal contrast can appear either correlated or anti-correlated with the topography depending on the distance of closest approach and the system temperature. The dependence of the dissipated energy, and the reversibility of a structural change, on the tip frequency and system temperature is investigated and the relevance of this to single-atom manipulation with the NC-AFM is discussed.  相似文献   

5.
Dayeh SA  Yu ET  Wang D 《Nano letters》2007,7(8):2486-2490
We have studied the dependence of Au-assisted InAs nanowire (NW) growth on InAs(111)B substrates as a function of substrate temperature and input V/III precursor ratio using organometallic vapor-phase epitaxy. Temperature-dependent growth was observed within certain temperature windows that are highly dependent on input V/III ratios. This dependence was found to be a direct consequence of the drop in NW nucleation and growth rate with increasing V/III ratio at a constant growth temperature due to depletion of indium at the NW growth sites. The growth rate was found to be determined by the local V/III ratio, which is dependent on the input precursor flow rates, growth temperature, and substrate decomposition. These studies advance understanding of the key processes involved in III-V NW growth, support the general validity of the vapor-liquid-solid growth mechanism for III-V NWs, and improve rational control over their growth morphology.  相似文献   

6.
Tian J  Cao H  Wu W  Yu Q  Chen YP 《Nano letters》2011,11(9):3663-3668
We report an atomically resolved scanning tunneling microscopy investigation of the edges of graphene grains synthesized on Cu foils by chemical vapor deposition. Most of the edges are macroscopically parallel to the zigzag directions of graphene lattice. These edges have microscopic roughness that is found to also follow zigzag directions at atomic scale, displaying many ~120° turns. A prominent standing wave pattern with periodicity ~3a/4 (a being the graphene lattice constant) is observed near a rare-occurring armchair-oriented edge. Observed features of this wave pattern are consistent with the electronic intervalley backscattering predicted to occur at armchair edges but not at zigzag edges.  相似文献   

7.
We demonstrate high-fidelity guidance of axons using rows of nanowires. The axons are prevented from crossing the rows, making it possible to guide and sort a large number of axons as opposed to when chemical patterns are used. Focal adhesion forms at the nanowires establishing a possible site of information transfer between the surface and the cells. Rows of gallium phosphide (GaP) nanowires were epitaxially grown on GaP(111) substrates in patterns defined by electron beam lithography.  相似文献   

8.
Interaction potential plays a vital role on the friction. Potential energy of two contacts directly determines on the friction force. However, many mathematic models proposed, always abandon the instantaneous status during sliding to devote to a weighted average over lateral force, which might miss some information about friction behavior. In this work, the relation among potential energies, separation distances of two contracts, and positions in the sliding direction are studied to evaluate the instantaneous friction characteristics. Two hydrogenated diamond surfaces are used as the examined model. The results show that a watershed between positive and negative friction forces locates at the position with the minimum adsorption energy. A rapid decrease in potential energy occurs near the 2.5 nN external force, where the friction coefficient approaches zero at each position in the sliding direction. Therefore, a novel method may be developed to greatly reduce the friction coefficient between two surfaces by adjusting the contract pressure.  相似文献   

9.
Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities.   相似文献   

10.
Techniques for controlling atomic step position at low-temperature and selective growth of Cu nanowires along the atomic step edges have been studied. By immersing the Si(111) substrates with well-defined step/terrace surfaces in the Cu-contained water with the dissolved oxygen content of less than 1 ppb, selective growth of Cu nanowires along the step edges was successfully achieved. Total reflection X-ray fluorescence spectroscopy (TXRF) revealed that the fabricated nanowires were composed of mono-atomic Cu rows. For step position control, the characteristics of step-flow pinning effect of SiO2 films were investigated. Fine SiO2 line patterns drawn by anodic oxidation using AFM probes enable us to obtain the step-free Si areas predetermined by the patterns.  相似文献   

11.
Kim J  Anderson WA 《Nano letters》2006,6(7):1356-1359
We present results from the direct electrical measurement of an as-grown nanowire. The nickel silicide (NiSi) nanowire was spontaneously grown across a trench between two electrodes used for measurement. The NiSi nanowire, 58 nm in diameter and 2.9 microm in length, showed a low resistance characteristic of 147.9 Omega. This unique method is straightforward and does not require removal of a grown nanowire to be moved into a measurement environment.  相似文献   

12.
The presence of gold on the sidewall of a tapered, single silicon nanowire is directly quantified from core-level nanospectra using energy-filtered photoelectron emission microscopy. The uniform island-type partial coverage of gold determined as 0.42+/-0.06 (approximately 1.8 ML) is in quantitative agreement with the diameter reduction of the gold catalyst observed by scanning electron microscopy and is confirmed by a splitting of the photothresholds collected from the sidewall, from which characteristic local work functions are extracted using a model of the full secondary electron distributions.  相似文献   

13.
This paper discusses a set of recent experimental results in which the mechanical properties of monolayer graphene molecules were determined. The results included the second-order elastic modulus which determines the linear elastic behavior and an estimate of the third-order elastic modulus which determines the non-linear elastic behavior. In addition, the distribution of the breaking force strongly suggested the graphene to be free of defects, so the measured breaking strength of the films represented the intrinsic breaking strength of the underlying carbon covalent bonds. The results of recent simulation efforts to predict the mechanical properties of graphene are discussed in light of the experiments. Finally, this paper contains a discussion of some of the extra challenges associated with experimental validation of multi-scale models.  相似文献   

14.
15.
III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs(1-x)Sb(x) heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.  相似文献   

16.
17.
Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces   总被引:1,自引:0,他引:1  
Quantum dots provide unique advantages in the design of novel optoelectronic devices owing to the ability to tune their properties as a function of size. Here we demonstrate a new technique for fabrication of quantum dots during the nucleation stage of atomic layer deposition (ALD) of PbS. Islands with sub-10 nm diameters were observed during the initial ALD cycles by transmission electron microscopy, and in situ observations of the coalescence and sublimation behavior of these islands show the possibility of further modifying the size and density of dots by annealing. The ALD process can be used to cover high-aspect-ratio nanostructures, as demonstrated by the uniform coating of a Si nanowire array with a single layer of PbS quantum dots. Photoluminescence measurements on the quantum dot/nanowire composites show a blue shift when the number of ALD cycles is decreased, suggesting a route to fabricate unique three-dimensional nanostructured devices such as solar cells.  相似文献   

18.
The use of III-V materials as the channel in future transistor devices is dependent on removing the deleterious native oxides from their surface before deposition of a gate dielectric. Trimethylaluminium has been found to achieve in situ 'clean-up' of the oxides of GaAs and InGaAs before atomic layer deposition (ALD) of alumina. Here we propose six reaction mechanisms for 'clean-up,' featuring exchange of ligands between surface atoms, reduction of arsenic oxide by methyl groups and desorption of various products. We use first principles Density Functional Theory (DFT) to determine which mechanistic path is thermodynamically favoured based on models of the bulk oxides and gas-phase products. We therefore predict that 'clean-up' of arsenic oxides mostly produces As4 gas. Most C is predicted to form C2H6 but with some C2H4, CH4 and H2O. An alternative pathway is non-redox ligand exchange, which allows non-reducible oxides to be cleaned-up.  相似文献   

19.
Triblock copolymers composed of polyethylene oxide (PEO) and polypropylene oxide (PPO) are used in various fields as nonionic surfactants. In this study, we measured interaction forces between untreated hydrophilic silica surfaces in solutions with two typical triblock copolymers, Pluronic P123 (PEO20PPO70PEO20) and F127 (PEO99PPO65PEO99), in the presence of 1 mM and 500 mM NaCl using atomic force microscopy (AFM). In solutions at the copolymer concentration of 1 µM, which is below the critical micelle concentration (CMC), the measured interaction forces were monotonically repulsive in the presence of 1 mM NaCl, which suggested the brush-like conformation of copolymers on the surfaces. When the concentration of NaCl was increased to 500 mM, interaction forces became attractive, which indicated the bridging of adsorbed polymers onto surfaces, the strength of which varied depending on the affinity and adsorption density of copolymers. The interactions at the copolymer concentration of 1 mM, which were above the CMC of both copolymers, were steric repulsions between adsorbed micelles on the surfaces with 1 mM of NaCl. For 500 mM of NaCl, an attractive jump after a steric repulsion was observed only in the force curve for P123, which inferred that the displacement of micelles from the surfaces was presumably due to a decrease in the strength of adsorption caused by the dehydration of EO groups. These results indicated that the length of the EO group considerably affected the interactions.  相似文献   

20.
In this review, we briefly discuss recent developments in methods of local structure determination and their applications. Specifically, we shall discuss recent developments in diffraction anomalous fine structure, the observation of natural dichroism in X-ray absorption fine structure and some recent applications of the X-ray absorption fine structure method. We shall also discuss recent developments in X-ray holography and the development of a new method for the direct determination of the structure of two-dimensional crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号