首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed respiration studies on isolated liver mitochondria from streptozotocin-induced diabetic Sprague-Dawley rats revealed a disease-associated decrease in the ADP/O ratio, a marker for mitochondrial ability to couple the consumption of oxygen to the phosphorylation of ADP. This decrease was observed following induction of respiration with glutamate/malate, succinate, or duroquinol, which enter the electron transport chain selectively at complexes I (NADH dehydrogenase), II (succinate dehydrogenase), or III (cytochrome bc1 complex), respectively. These data, coupled with studies using respiratory inhibitors (most importantly antimycin A and myxothiazol), localize at least a portion of this defect to a single site within the electron transport chain (center P in the Q-cycle portion of complex III). These results suggest that liver mitochondria from diabetic animals may generate increased levels of reactive oxygen species at the portion of the electron transport chain already established as the major site of mitochondrial free radical generation. The reduction in the ADP/O ratio occurred in mitochondria that do not have overt defects in the respiratory control ratio or in State 3 and State 4 respiration. The data in this paper suggest that defects in center P of the electron transport chain likely increase mitochondrial exposure to oxidants in the diabetic. This data may partially explain the evidence of altered exposure and/or response to reactive species in mitochondria from diabetics. This work thus provides further clues to the interaction between oxidative stress and diabetes-associated mitochondrial dysfunction.  相似文献   

2.
Expression of the human protooncogene bcl-2 protects neural cells from death induced by many forms of stress, including conditions that greatly elevate intracellular Ca2+. Considering that Bcl-2 is partially localized to mitochondrial membranes and that excessive mitochondrial Ca2+ uptake can impair electron transport and oxidative phosphorylation, the present study tested the hypothesis that mitochondria from Bcl-2-expressing cells have a higher capacity for energy-dependent Ca2+ uptake and a greater resistance to Ca(2+)-induced respiratory injury than mitochondria from cells that do not express this protein. The overexpression of bcl-2 enhanced the mitochondrial Ca2+ uptake capacity using either digitonin-permeabilized GT1-7 neural cells or isolated GT1-7 mitochondria by 1.7 and 3.9 fold, respectively, when glutamate and malate were used as respiratory substrates. This difference was less apparent when respiration was driven by the oxidation of succinate in the presence of the respiratory complex I inhibitor rotenone. Mitochondria from Bcl-2 expressors were also much more resistant to inhibition of NADH-dependent respiration caused by sequestration of large Ca2+ loads. The enhanced ability of mitochondria within Bcl-2-expressing cells to sequester large quantities of Ca2+ without undergoing profound respiratory impairment provides a plausible mechanism by which Bcl-2 inhibits certain forms of delayed cell death, including neuronal death associated with ischemia and excitotoxicity.  相似文献   

3.
Respiration, oxidative phosphorylation, and the mitochondrial membrane potential (DeltaPsi) of tachyzoites of the apicomplexan parasite Toxoplasma gondii were assayed in situ using very low concentrations of digitonin to render their plasma membrane permeable to succinate, ADP, safranin O, and other small molecules. The rate of basal respiration was slightly increased by digitonin when the cells were incubated in medium containing succinate. ADP promoted an oligomycin-sensitive transition from resting to phosphorylating respiration. Respiration was sensitive to antimycin A and cyanide, and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was oxidized by antimycin A-poisoned mitochondria. The addition of ADP after TMPD/ascorbate also resulted in phosphorylating respiration. The antitoxoplasmosis drug atovaquone, at a very low concentration (0.03 microM), totally inhibited respiration and disrupted the mitochondrial membrane potential. Atovaquone was shown to inhibit the respiratory chain of T. gondii and mammalian mitochondria between cytochrome b and c1 as occurs with antimycin A1. Phosphorylation of ADP could not be obtained in permeabilized tachyzoites in the presence of either pyruvate, 3-oxo-glutarate, glutamate, isocitrate, dihydroorotate, alpha-glycerophosphate, or endogenous substrates. Although ADP phosphorylation was detected in the presence of malate, this activity was rotenone-insensitive and was probably due to the conversion of malate into succinate through a fumarate reductase activity that was detected in mitochondrial extracts. Together these results provide the first direct biochemical evidence that the respiratory chain and oxidative phosphorylation are functional in apicomplexan parasites, although the terminal respiratory pathway is different from that in the mammalian host.  相似文献   

4.
The relationship between the metabolism and the cytotoxic effects of the alkyl esters of p-hydroxybenzoic acid (parabens) has been studied in freshly isolated rat hepatocytes. Incubation of hepatocytes with propyl-paraben (0.5 to 2.0 mM) elicited a concentration- and time-dependent cell death that was enhanced when enzymatic hydrolysis of propyl-paraben to p-hydroxybenzoic acid was inhibited by a carboxylesterase inhibitor, diazinon. The cytotoxicity was accompanied by losses of cellular ATP, total adenine nucleotide pools, and reduced glutathione, independently of lipid peroxidation and protein thiol oxidation. In the comparative toxic effects based on cell viability, ATP level, and rhodamine 123 retention, butyl- and isobutyl-parabens were more toxic than propyl- and isopropyl-parabens, and ethyl- and methyl-parabens and p-hydroxybenzoic acid were less toxic than propyl-paraben. The addition of propyl-paraben to isolated hepatic mitochondria reduced state 3 respiration with NAD+-linked substrates (pyruvate plus malate) and/or with an FAD-linked substrate (succinate plus rotenone), whereas state 3 respiration with ascorbate plus tetramethyl-p-phenylenediamine (cytochrome oxidase-linked respiration) was not affected significantly by propyl-paraben. Further, the addition of these parabens caused a concentration-dependent increase in the rate of state 4 oxygen consumption, indicating an uncoupling effect. The rate of state 3 oxygen consumption was inhibited by propyl-paraben, butyl-paraben, and their chain isomers. These results indicate that a) propyl-paraben-induced cytotoxicity is mediated by the parent compound rather than by its metabolite p-hydroxybenzoic acid; b) the toxicity is associated with ATP depletion via impairment of mitochondrial function related to membrane potential and/or oxidative phosphorylation; and c) the toxic potency of parabens to hepatocytes or mitochondria depends on the relative elongation of alkyl side-chains esterified to the carboxyl group of p-hydroxybenzoic acid.  相似文献   

5.
We investigated in rats the effect of 4 wk of hypodynamia on the respiration of mitochondria isolated from four distinct muscles [soleus, extensor digitorum longus, tibial anterior, and gastrocnemius (Gas)] and from subsarcolemmal (SS) and intermyofibrillar (IMF) regions of mixed hindlimb muscles that mainly contained the four cited muscles. With pyruvate plus malate as respiratory substrate, 4 wk of hindlimb suspension produced an 18% decrease in state 3 respiration for IMF mitochondria compared with those in the control group (P < 0.05). The SS mitochondria state 3 were not significantly changed. Concerning the four single muscles, the mitochondrial respiration was significantly decreased in the Gas muscle, which showed a 59% decrease in state 3 with pyruvate + malate (P < 0.05). The other muscles presented no significant decrease in respiratory rate in comparison with the control group. With succinate + rotenone, there was no significant difference in the respiratory rate compared with the respective control group, whatever the mitochondrial origin (SS, or IMF, or from single muscle). We conclude that 4 wk of hindlimb suspension alters the respiration of IMF mitochondria in hindlimb skeletal muscles and seems to act negatively on complex I of the electron-transport chain or prior sites. The muscle mitochondria most affected are those isolated from the Gas muscle.  相似文献   

6.
The purpose of this work was to examine whether ursodeoxycholate (UDC), a hydrophilic bile salt, could reduce mitochondrial liver injury from chronic ethanol consumption in rats. Animals were pair-fed liquid diets containing 36% of calories as ethanol or isocaloric carbohydrates. They were randomly assigned into 4 groups of 7 rats each and received a specific treatment for 5 weeks: control diet, ethanol diet, control diet + UDC, and ethanol diet + UDC. Respiratory rates of isolated liver mitochondria were measured using a Clark oxygen electrode with sodium succinate as substrate. Mitochondria from rats chronically fed ethanol demonstrated an impaired ability to produce energy. At the fatty liver stage, the ADP-stimulated respiration (V3) was depressed by 33%, the respiratory control ratio (RC) by 25% and the P/O ratio by 15%. In ethanol-fed rats supplemented with UDC, both the rate and efficiency of ATP synthesis via the oxidative phosphorylation were improved: V3 was increased by 35%, P/O by 8%. All the respiratory parameters were similar in control group and control + UDC group. On the other hand, the number and size of mitochondria were assessed by electron microscopy and computer-assisted quantitative analysis. The number of mitochondria from ethanol-treated rats was decreased by 29%, and they were enlarged by 74%. Both parameters were normalized to control values by UDC treatment. These studies demonstrate that UDC has a protective effect against ethanol-induced mitochondrial injury by improving ATP synthesis and preserving liver mitochondrial morphology. These UDC positive effects may contribute to the observed decrease in fat accumulation and may delay the progression of alcoholic injury to more advanced stages.  相似文献   

7.
Ion permeability of internal membrane and a respiration in isolated rat liver mitochondria, further related to as "sodium ones", were studied following replacement of K+ ions for Na+ ones in the mitochondrial matrix. As compared with the control ("potassium mitochondria"), state 4 respiration in the sodium mitochondria, energized by succinate, was shown to be enhanced in KCl or sucrose media. Oxygen consumption rates in the sodium mitochondria, being in state 3 or stimulated by 2,4-dinitrophenol, were lower than rates for the control mitochondria. This effect was much pronounced in the sucrose medium. The coefficients, characterizing the distribution of 137Cs between mitochondria and the medium, were lower for the sodium mitochondria than for the control in the presence of 2.5 mM succinate and 10(-8) M valinomycin. In comparison with the control, a more extensive swelling for the sodium mitochondria was found, first, in the medium containing 25 mM K-acetate and 100 mM sucrose for succinate-energized mitochondria, and second, in the medium containing 125 mM NH4NO3 without mitochondrial energization. Changes disclosed in respiration, swelling and coefficients of 137Cs distribution for the sodium mitochondria are supposed to be caused by non-uniform effects of Na+ and K+ ions on the water structure of mitochondrial matrix, ion permeability of internal membrane, and the activity in oxidative phosphorylation enzymes.  相似文献   

8.
1. The direct effects of diazoxide on mitochondrial membrane potential, Ca2+ transport, oxygen consumption and ATP generation were investigated in mouse pancreatic B-cells and rat liver mitochondria. 2. Diazoxide, at concentrations commonly used to open adenosine 5'-triphosphate (ATP)-dependent K+-channels (K(ATP) channels) in pancreatic B-cells (100 to 1000 microM), decreased mitochondrial membrane potential in mouse intact perifused B-cells, as evidenced by an increase of rhodamine 123 fluorescence. This reversible decrease of membrane potential occurred at non-stimulating (5 mM) and stimulating (20 mM) glucose concentrations. 3. A decrease of mitochondrial membrane potential in perifused B-cells was also caused by pinacidil, but no effect could be seen with levcromakalim (500 microM each). 4. Measurements by a tetraphenylphosphonium-sensitive electrode of the membrane potential of rat isolated liver mitochondria confirmed that diazoxide decreased mitochondrial membrane potential by a direct action. Pretreatment with glibenclamide (2 microM) did not antagonize the effects of diazoxide. 5. In Fura 2-loaded B-cells perifused with the Ca2+ channel blocker, D 600, a moderate, reversible increase of intracellular Ca2+ concentration could be seen in response to 500 microM diazoxide. This intracellular Ca2+ mobilization may be due to mitochondrial Ca2+ release, since the reduction of membrane potential of isolated liver mitochondria by diazoxide was accompanied by an accelerated release of Ca2+ stored in the mitochondria. 6. In the presence of 500 microM diazoxide, ATP content of pancreatic islets incubated in 20 mM glucose for 30 min was significantly decreased by 29%. However, insulin secretion from mouse perifused islets induced by 40 mM K+ in the presence of 10 mM glucose was not inhibited by 500 microM diazoxide, suggesting that the energy-dependent processes of insulin secretion distal to Ca2+ influx were not affected by diazoxide at this concentration. 7. The effects of diazoxide on oxygen consumption and ATP production of liver mitochondria varied depending on the respiratory substrates (5 mM succinate, 10 mM alpha-ketoisocaproic acid, 2 mM tetramethyl phenylenediamine plus 5 mM ascorbic acid), indicating an inhibition of respiratory chain complex II. Pinacidil, but not levcromakalim, inhibited alpha-ketoisocaproic acid-fuelled ATP production. 8. In conclusion, diazoxide directly affects mitochondrial energy metabolism, which may be of relevance for stimulus-secretion coupling in pancreatic B-cells.  相似文献   

9.
Cell swelling is now admitted as being a new principle of metabolic control but little is known about the energetics of cell swelling. We have studied the influence of hypo- or hyperosmolarity on both isolated hepatocytes and isolated rat liver mitochondria. Cytosolic hypoosmolarity on isolated hepatocytes induces an increase in matricial volume and does not affect the myxothiazol sensitive respiratory rate while the absolute value of the overall thermodynamic driving force over the electron transport chain increases. This points to an increase in kinetic control upstream the respiratory chain when cytosolic osmolarity is decreased. On isolated rat liver mitochondria incubated in hypoosmotic potassium chloride media, energetic parameters vary as in cells and oxidative phosphorylation efficiency is not affected. Cytosolic hyperosmolarity induced by sodium co-transported amino acids, per se, does not affect either matrix volume or energetic parameters. This is not the case in isolated rat liver mitochondria incubated in sucrose hyperosmotic medium. Indeed, in this medium, adenine nucleotide carrier is inhibited as the external osmolarity increases, which lowers the state 3 respiration close to state 4 level and consequently leads to a decrease in oxidative phosphorylation efficiency. When isolated rat liver mitochondria are incubated in KCl hyperosmotic medium, state 3 respiratory rate, matrix volume and membrane electrical potential vary as a function of time. Indeed, matrix volume is recovered in hyperosmotic KCl medium and this recovery is dependent on Pi-Kentry. State 3 respiratory rate increases and membrane electrical potential difference decreases during the first minutes of mitochondrial incubation until the attainment of the same value as in isoosmotic medium. This shows that matrix volume, flux and force are regulated as a function of time in KCl hyperosmotic medium. Under steady state, neither matrix volume nor energetic parameters are affected. Moreover, NaCl hyperosmotic medium allows matrix volume recovery but induces a decrease in state 3 respiratory flux. This indicates that potassium is necessary for both matrix volume and flux recovery in isolated mitochondria. We conclude that hypoosmotic medium induces an increase in kinetic control both upstream and on the respiratory chain and changes the oxidative phosphorylation response to forces. At steady state, hyperosmolarity, per se, has no effect on oxidative phosphorylation in either isolated hepatocytes or isolated mitochondria incubated in KCl medium. Therefore, potassium plays a key role in matrix volume, flux and force regulation.  相似文献   

10.
Ehrlich ascites-tumour cells accumulate Ca2+ when incubated aerobically with succinate, phosphate and rotenone, as revealed by isotopic and atomic-absorption measurements. Ca2+ does not stimulate oxygen consumption by carefully prepared Ehrlich cells, but des so when the cells are placed in a hypo-osmotic medium. Neither glutamate nor malate support Ca2+ uptake in 'intact' Ehrlich cells, nor does the endogenous NAD-linked respiration. Ca2+ uptake is completely dependent on mitochondrial energy-coupling mechansims. It was an unexpected finding that maximal Ca2+ uptake supported by succinate requires rotenone, which blocks oxidation of enogenous NAD-linked substrates. Phosphate functions as co-anion for entry of Ca2+. Ca2+ uptake is also supported by extra-cellular ATP; no other nucleoside 5'-di- or tri-phosphate was active. The accumulation of Ca2+ apparently takes place in the mitochondria, since oligomycin and atractyloside inhibit ATP-supported Ca2+ uptake. Glycolysis does not support Ca2+ uptake. Neither free mitochondria released from disrupted cells nor permeability-damaged cells capable of absorbing Trypan Blue were responsible for any large fraction of the total observed energy-coupled Ca2+ uptake. The observations reported also indicate that electron flow through energy-conserving site 1 promotes Ca2+ release from Ehrlich cells and that extra-cellular ATP increase permeability of the cell membrane, allowing both ATP and Ca2+ to enter the cells more readily.  相似文献   

11.
We describe the use of graded decrements of medium osmolarity to progressively unmask respiratory capacities of whole human platelets in suspension. This departure led to the first demonstration that human platelet mitochondria are capable of tightly coupled respiration that responds to addition of mitochondrial substrates, ADP, and inhibitors in a way that other mammalian mitochondria are expected to behave. In 300 mosM media added alpha-glycerophosphate (G3P), succinate, or ADP effected only slight stimulation of base-line O2 consumption. At 180 mosM O2 consumption peaked and was not significantly affected by succinate or ADP. At 80 mosM base-line O2 consumption fell precipitously and was restored by G3P or succinate prior to being raised to its highest levels by ADP. Added NADH had no effect on O2 consumption at 80 mosM but sharply stimulated it when platelet suspensions were exposed to 60 mosM media by pretreatment with distilled water. At 80 mosM, selected compounds that inhibit or uncouple oxidative phosphorylation of isolated mammalian mitochondria from a variety of cells exerted similar influences on while platelets.  相似文献   

12.
The effect of the herbicide 4,6-dinitro-o-cresol (DNOC), a structural analogue of the classical protonophore 2,4-dinitrophenol, on the bioenergetics and inner membrane permeability of isolated rat liver mitochondria was studied. We observed that DNOC (10-50 microM) acts as a classical uncoupler of oxidative phosphorylation in rat liver mitochondria, promoting both an increase in succinate-supported mitochondrial respiration in the presence or absence of ADP and a decrease in transmembrane potential. The protonophoric activity of DNOC was evidenced by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium, in the presence of valinomycin. At higher concentrations (> 50 microM), DNOC also induces an inhibition of succinate-supported respiration, and a decrease in the activity of the succinate dehydrogenase can be observed. The addition of uncoupling concentrations of DNOC to Ca(2+)-loaded mitochondria treated with Ruthenium Red results in non-specific membrane permeabilization, as evidenced by mitochondrial swelling in isosmotic sucrose medium. Cyclosporin A, which inhibits mitochondrial permeability transition, prevented DNOC-induced mitochondrial swelling in the presence of Ca2+, which was accompanied by a decrease in mitochondrial membrane protein thiol content, owing to protein thiol oxidation. Catalase partially inhibits mitochondrial swelling and protein thiol oxidation, indicating the participation of mitochondrial-generated reactive oxygen species in this process. It is concluded that DNOC is a potent potent protonophore acting as a classical uncoupler of oxidative phosphorylation in rat liver mitochondria by dissipating the proton electrochemical gradient. Treatment of Ca(2+)-loaded mitochondria with uncoupling concentrations of DNOC results in mitochondrial permeability transition, associated with membrane protein thiol oxidation by reactive oxygen species.  相似文献   

13.
The maximum rate (Vmax) of some mitochondrial enzymatic activities related to the energy transduction (citrate synthase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, cytochrome oxidase) and amino acid metabolism (glutamate dehydrogenase, glutamate-pyruvate-transaminase, glutamate-oxaloacetate-transaminase) was evaluated in non-synaptic (free) and intra-synaptic mitochondria from rat brain cerebral cortex. Three types of mitochondria were isolated from rats subjected to i.p. treatment with L-acetylcarnitine at two different doses (30 and 60 mg.kg-1, 28 days, 5 days/week). In control (vehicle-treated) animals, enzyme activities are differently expressed in non-synaptic mitochondria respect to intra-synaptic "light" and "heavy" ones. In fact, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, glutamate-pyruvate-transaminase and glutamate-oxaloacetate-transaminase are lower, while citrate synthase, cytochrome oxidase and glutamate dehydrogenase are higher in intra-synaptic mitochondria than in non-synaptic ones. This confirms that in various types of brain mitochondria a different metabolic machinery exists, due to their location in vivo. Treatment with L-acetylcarnitine decreased citrate synthase and glutamate dehydrogenase activities, while increased cytochrome oxidase and alpha-ketoglutarate dehydrogenase activities only in intra-synaptic mitochondria. Therefore in vivo administration of L-acetylcarnitine mainly affects some specific enzyme activities, suggesting a specific molecular trigger mode of action and only of the intra-synaptic mitochondria, suggesting a specific subcellular trigger site of action.  相似文献   

14.
The direct effects of three different classes of structurally diverse hypolipidemic agents on respiration were studied in mitochondria isolated from donor Sprague-Dawley rats. Two classes of peroxisome proliferators (i.e. plasticizers and hypolipidemic hormones and drugs) and one class of peroxisome inhibitors (i.e. anti-psychotic drugs) were studied. The phthalate ester plasticizers dibutylphthalate, ethylhexanoic acid and di(2-ethylhexyl) adipate, the hypolipidemic hormones or drugs dehydro-epiandrosterone (DHEA), thyroxine (T4), triiodothyronine (T3), gemfibrozil, clofibrate and naphthoflavone, and the anti-psychotic drugs chlorpromazine, thioridazine and fluphenazine were studied. As the dose of the plasticizer dibutylphthalate increased from 8 to 200 mumol/l, there was a decrease (P < 0.05) in state 3 (+ADP) respiration and in the respiratory control ratio for both substrates tested. The anti-psychotic drug chlorpromazine decreased state 3 malate + pyruvate-supported respiration and increased state 3 succinate-supported respiration. As the concentration of all three anti-psychotic drugs increased, there was a linear increase in state 4 respiration (-ADP) and a decrease in the respiratory control ratio for both substrates tested. As the dose of the hypolipidemic agents DHEA, gemfibrozil and T4 increased, there was a linear reduction in state 3 malate + pyruvate-supported respiration. However, when succinate was used as the substrate to support respiration, only the thyroid hormones significantly decreased state 3 respiration. Gemfibrozil, T4 and T3 increased state 4 respiration, regardless of the substrate used. As the dose of clofibrate, gemfibrozil, and the thyroid hormones increased, there was a linear reduction in the respiratory control ratio for both substrates tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To examine the effect of endurance training (6 wk of treadmill running) on regional mitochondrial adaptations within skeletal muscle, subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria were isolated from trained and control rat hindlimb muscles. Mitochondrial oxygen consumption (VO2) was measured polarographically by using the following substrates: 1 mM pyruvate + 1 mM malate (P+M), 10 mM 2-oxoglutarate, 45 microM palmitoyl-DL-carnitine + 1 mM malate, and 10 mM glutamate. Spectrophotometric assays of cytochrome-c reductase and NAD-specific isocitrate dehydrogenase (IDH) activity were also performed. Maximal (state III) and resting (state IV) VO2 were lower in SS than in IMF mitochondria in both trained and control groups. In SS mitochondria, training elicited significant 36 and 20% increases in state III VO2 with P+M and glutamate, respectively. In IMF mitochondria, training resulted in a smaller (20%), yet significant, increase in state III VO2 with P+M as a substrate, whereas state III VO2 increased 33 and 27% with 2-oxoglutarate and palmitoyl-DL-carnitine + malate, respectively. Within groups, cytochrome-c reductase and IDH activities were lower in SS when compared with IMF mitochondria. Training increased succinate-cytochrome-c reductase in both SS (30%) and IMF mitochondria (28%). IDH activity increased 32% in the trained IMF but remained unchanged in SS mitochondria. We conclude that endurance training promotes substantial changes in protein stoichiometry and composition of both SS and IMF mitochondria.  相似文献   

16.
Entacapone, a novel mainly peripherally acting catechol-O-methyltransferase inhibitor used in the treatment of Parkinson's disease, was evaluated for its possible uncoupling activity in cell culture, in rat liver mitochondria, and in isolated guinea-pig heart. Entacapone did not stimulate respiration in the L1210 murine T cell lymphoma cell line at the concentrations studied (5-40 microM). Furthermore, entacapone neither increased mitochondrial respiration nor impaired cardiac function at pharmacologically relevant concentrations (< 10 microM). In fact, the threshold concentration for increased mitochondrial oxygen consumption was 20 microM and half-maximal stimulation of respiration was not detected until 58 microM. Surprisingly, tolcapone, another catechol-O-methyltransferase inhibitor, which acts both peripherally and centrally, stimulated respiration in L1210 cells at the lowest concentration studied (5 microM). In addition, 1 microM tolcapone increased mitochondrial respiration, indicating that it caused uncoupling at a much lower concentration than that of 2,4-dinitrophenol, a well-known uncoupler of oxidative phosphorylation. Tolcapone also impaired the mechanical function and oxygen consumption of the isolated guinea-pig heart at 1 microM. These results show that peripherally acting entacapone, unlike the brain-penetrating tolcapone, is a safe catechol-O-methyltransferase inhibitor for the treatment of Parkinson's disease, since it does not interfere with mitochondrial energy metabolism at pharmacologically effective concentrations.  相似文献   

17.
The effect of adrenaline on the control of respiratory activity of mitochondria from fetal hepatocytes in primary culture was studied. In the absence of adrenaline, the respiratory control ratio (RCR) of mitochondria increased during the first 3 days of culture due to a decrease in the rate of state 4 respiration. The presence of adrenaline in the incubation medium further increased the mitochondrial RCR through a decrease in the rate of respiration in state 4 and to an increase in the respiration rate in state 3. The effect of adrenaline was mimicked by dibutyryl-cAMP, forskolin, and isobutyl methyl xanthine. All these compounds increased cAMP concentrations, suggesting that cAMP may be involved in the effect of adrenaline. The increase in intracellular free Ca2+ concentrations caused by phenylephrine, vasopressin, or thapsigargin was also accompanied by an increase in the RCR, suggesting that both phenomena are associated. Dibutyryl-cAMP also increased free Ca2+ concentrations, suggesting that the effects of cAMP may be mediated by free Ca2+ concentrations. Adrenaline, dibutyryl-cAMP, phenylephrine, vasopressin, and thapsigargin promoted adenine nucleotide accumulation in mitochondria; this may be an intermediate step in the activation of mitochondrial respiratory function. These results suggest that the stimulatory effect of adrenaline on mitochondrial maturation in cultured fetal rat hepatocytes may be exerted through a mechanism in which both cAMP and Ca2+ act as second messengers. It is concluded that the effect of adrenaline on mitochondrial maturation is exerted by both alpha- and beta-adrenergic mechanisms and is mediated by the increase in adenine nucleotide contents of mitochondria.  相似文献   

18.
1. The effects of piroxicam, a nonsteroidal anti-inflammatory drug, on rat liver mitochondria were investigated in order to obtain direct evidence about a possible uncoupling effect, as suggested by a previous work with the perfused rat liver. 2. Piroxicam increased respiration in the absence of exogenous ADP and decreased respiration in the presence of exogenous ADP, the ADP/O ratios and the respiratory control ratios. 3. The ATPase activity of intact mitochondria was increased by piroxicam. With 2,4-dinitrophenol uncoupled mitochondria, inhibition was observed. The ATPase activity of freeze-thawing disrupted mitochondria was insensitive to piroxicam. 4. Swelling driven by the oxidation of several substrates and safranine uptake induced by succinate oxidation were inhibited. 5. The results of this work represent a direct evidence that piroxicam acts as an uncoupler, thus, decreasing mitochondrial ATP generation.  相似文献   

19.
Honokiol, a compound extracted from the Chinese medicinal herb Magnolia officinalis, has a strong antioxidant effect on the inhibition of lipid peroxidation in rat heart mitochondria. To investigate the protective effect of honokiol on hepatocytes from peroxidative injury, oxygen consumption and malondialdehyde formation for in vitro iron-induced lipid peroxidation were assayed, and the mitochondrial respiratory function for in vivo ischemia-reperfusion injury were evaluated in rat liver, respectively. The inhibitory effect of honokiol on oxygen consumption and malondialdehyde formation during iron-induced lipid peroxidation in liver mitochondria showed obvious dose-dependent responses with a concentration of 50% inhibition being 2.3 x 10(-7) M and 4.96 x 10(-7) M, respectively, that is, 550 times and 680 times more potent than alpha-tocopherol, respectively. When rat livers were introduced with ischemia 60 min followed by reperfusion for 60 min, and then pretreated with honokiol (10 micrograms/kg BW), the mitochondrial respiratory control ratio (the quotient of the respiration rate of State 3 to that of State 4) and ADP/O ratio from the honokiol-treated livers were significantly higher than those of non-treated livers during reperfusion. The dose-dependent protective effect of honokiol on ischemia-reperfusion injury was 10 microgram-100 micrograms/Kg body weight. We conclude that honokiol is a strong antioxidant and shed insight into clinical implications for protection of hepatocytes from ischemia-reperfusion injury.  相似文献   

20.
Oxidant stress induced by hydrophobic bile acids has been implicated in the pathogenesis of liver injury in cholestatic liver disorders. We evaluated the effect of idebenone, a coenzyme Q analogue, on taurochenodeoxycholic acid (TCDC)-induced cell injury and oxidant stress in isolated rat hepatocytes and on glycochenodeoxycholic acid (GCDC)-induced generation of hydroperoxides in fresh hepatic mitochondria. Isolated rat hepatocytes in suspension under 9% oxygen atmosphere were preincubated with 0, 50, and 100 micromol/l idebenone for 30 min and then exposed to 1000 micromol/l TCDC for 4 h. LDH release (cell injury) and thiobarbituric acid reactive substances (measure of lipid peroxidation) increased after TCDC exposure but were markedly suppressed by idebenone pretreatment. In a second set of experiments, the addition of 100 micromol/l idebenone up to 3 h after hepatocytes were exposed to 1000 micromol/l TCDC resulted in abrogation of subsequent cell injury and markedly reduced oxidant damage to hepatocytes. Chenodeoxycholic acid concentrations increased to 5.15 nmol/10(6) cells after 2 h and to 7.05 after 4 h of incubation of hepatocytes with 1000 micromol/l TCDC, and did not differ in the presence of idebenone. In freshly isolated rat hepatic mitochondria, when respiration was stimulated by succinate, 10 micromol/l idebenone abrogated the generation of hydroperoxides during a 90-minute exposure to 400 micromol/l GCDC. These data demonstrate that idebenone functions as a potent protective hepatocyte antioxidant during hydrophobic bile acid toxicity, perhaps by reducing generation of oxygen free radicals in mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号