首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘沛静  辛福恩 《化学工程师》2020,34(4):75-78,83
本文通过一步电沉积法在预处理的泡沫镍表面原位生长针状镍钴双金属氧化物,制备得到高负载量的正极材料NiCo_2O_4。对比文献报道,预处理的泡沫镍表面存在细小的孔道结构不仅具备模板作用,而且该模板能够提高单位面积上活性物质的负载量时,具有一定电容贡献,不用二次剔除,制备方法简单高效。经过电化学测试,活性材料NiCo_2O_4的负载量为5.24mg·cm~(-2)时,NiCo_2O_4-泡沫镍电极在1A·g~(-1)的电流密度下,获得高的质量比电容为773F·g~(-1),在0.5A·g~(-1)的电流密度下,充放电测试3000圈,电容保持率为75%。显示该电极材料具有高的质量比电容和较好的循环使用寿命,该方法制备NiCo_2O_4-泡沫镍电极在超级电容器领域具有广泛的应用前景和一定的普适性。  相似文献   

2.
《广州化工》2021,49(7)
采用水热法和煅烧法相结合制备得到直接生长在泡沫镍上的网格状NiFe_2O_4纳米片阵列。采用X射线晶体衍射仪、扫描电子显微镜、透射电子显微镜等表征手段对其组成和结构进行表征并作为超级电容器电极进行测试。电化学性能测试结果表明,制得的NiFe_2O_4纳米片阵列结构电极具有较高的比电容和优异的电学性能。在电流密度为1 A·g~(-1)时,比电容量高达到722.05 F·g~(-1)。在电流密度为10 A·g~(-1)时,比电容为464.73 F·g~(-1),比电容量仍保持在1 A·g~(-1)时比电容量的64.36%。  相似文献   

3.
针对炭材料和金属氧化物单独作为电极材料存在的不足,以纳米炭纤维作为基底,通过水热法在纳米炭纤维上同时负载炭黑(CB)和钴酸镍(NiCo_2O_4)纳米线,进一步热处理制备了NiCo_2O_4/炭黑@纳米炭纤维自支撑复合电极。在复合电极材料中,纳米炭纤维网络提供了三维电子传导通道,钴酸镍提供了较高的比电容,炭黑显著地提高了NiCo_2O_4的导电性。通过调整沉积时间有效调节了活性物质的负载量,所得电极显示出优异的导电性(35.3 S·m~(-1)),在1 A·g~(-1)的电流密度下比电容达到846 F·g~(-1),且具有优良的循环稳定性。优异的电容性能使NiCo_2O_4/炭黑@纳米炭纤维复合电极有望成为下一代超级电容器的电极材料。  相似文献   

4.
采用湿法制备纳米Co_2O_4,并与碳纳米管掺杂,制备出纳米CO_3O_4-碳纳米管复合电极。纳米Co_3O_4与碳纳米管质量比为90:5。制备的复合电极表现出了良好的超级电容性能,复合电极单电极比电容达233.32F·g~(-1),与纯Co_3O_4电极相比,单电极比电容容提高20%。  相似文献   

5.
作为一种对静电电容器和电池起桥梁作用的新型储能装置,超级电容器的出现有效地缓解了煤、石油等化石燃料对环境的污染,如果要获得性能优良的超级电容器,就必须对它的核心组成部件电极材料进行详细的研究。本文用水热法制备出一种可以作为超级电容器电极的MnMoO_4材料,电化学测试结果表明当电流密度为5 A·g~(-1)时,获得的电容为1284.12 F·g~(-1);当电流密度升高到50 A·g~(-1)时,电容值为1055.56 F·g~(-1)。通过对MnMoO_4电极充放电循环性能测试可知,MnMoO_4有良好的循环稳定性,当充放电持续3000圈后,电容仍然保留了初始值的93.80%。因此,水热法制备出的MnMoO_4是一种非常有前景的超级电容器电极材料。  相似文献   

6.
通过简便的两步水热法,在碳布(CC)上直接合成了一种新型的CC/MnO_2/LiMn_2O_4复合材料,并将其用于超级电容器电化学性能研究,结果表明,在0.5 A·g~(-1)的电流密度下,CC/MnO_2/LiMn_2O_4复合材料的比容量达292.91 F·g~(-1),大于CC/MnO_2的比电容(233.52 F·g~(-1)),LiMn_2O_4和MnO_2发挥协同效应提高了超级电容器的电化学性能。  相似文献   

7.
针对炭材料和金属氧化物单独作为电极材料存在的不足,以纳米炭纤维作为基底,通过水热法在纳米炭纤维上同时负载炭黑(CB)和钴酸镍(NiCo2O4)纳米线,进一步热处理制备了NiCo2O4/炭黑@纳米炭纤维自支撑复合电极。在复合电极材料中,纳米炭纤维网络提供了三维电子传导通道,钴酸镍提供了较高的比电容,炭黑显著地提高了NiCo2O4的导电性。通过调整沉积时间有效调节了活性物质的负载量,所得电极显示出优异的导电性(35.3 S·m^-1),在1 A·g^-1的电流密度下比电容达到846 F·g^-1,且具有优良的循环稳定性。优异的电容性能使NiCo2O4/炭黑@纳米炭纤维复合电极有望成为下一代超级电容器的电极材料。  相似文献   

8.
《山东化工》2021,50(10)
基于关键原子可控集聚技术和纳米结构排列导向技术两大核心技术,通过调整物料配比、优化配料顺序、确定反应温度、调整压力时间、物相分离分析等研制出高能量、超稳定、强韧性纳米磷酸钴新材料。在三电极体系中表征了Co_3(PO_4)_2的电化学性能,在1.0 A g~(-1)的电流密度下,Co_3(PO_4)_2的比电容为410 F g~(-1)。采用PVA-KOH凝胶电解质制备了柔性对称超级电容器,在电流密度为0.5 A g~(-1)时的比电容为165 F g~(-1),在功率密度为756W kg~(-1)时的高能量密度为52.8 Wh kg~(-1)。结果表明,Co_3(PO_4)_2纳米片在高性能柔性储能器件中具有广阔的应用前景。  相似文献   

9.
刘莹莹  陈爱英 《广州化工》2020,48(10):44-47
采用GO模板法制备ZnO、NiO、Co_3O_4超薄纳米片,选用三维多孔泡沫镍作(NF)为导电基材,并通过一步水热法制备出ZnO/NF、NiO/NF、Co_3O_4/NF复合电极材料,探究三种纳米片材料对复合材料的结构和电化学性能的影响,Co_3O_4/NF复合电极材料,因其具备高度开放的多孔结构,增加了与电解液的接触面积,为氧化还原反应提供了有利的条件,在电流密度为3 A·g~(-1)时,质量比电容高达2633 F·g~(-1),因此,Co_3O_4/NF复合电极材料的电容性能最好。  相似文献   

10.
《辽宁化工》2021,50(1)
超级电容器(SCs)以其功率密度高、寿命长、生态友好、成本低等显著特点受到研究者的广泛关注。然而,能量密度仍然较低,限制了其进一步的应用。因此,选择具有高比电容的电极材料是提高超级电容器电化学性能的重要方法之一。采用简易的一步水热法成功地制备出过渡金属碳酸氢盐Ni(HCO_3)_2电极材料。经实验证明,该材料具有良好的电化学性能,在电流密度为1A·g~(-1)时具有较高的比电容2056F·g~(-1),且当用10A·g~(-1)的电流密度进行测试时比电容仍有1292F·g~(-1),说明Ni(HCO_3)_2材料具有良好的倍率性能。此外,在5 A·g~(-1)电流密度下循环2 000圈后仍然具有93%的比容量保持率,具有良好的循环稳定性。  相似文献   

11.
采用水热法,通过控制反应时间制备出不同形貌和尺寸的Co_3O_4材料。利用XRD和SEM对其结构和形貌进行表征,采用循环伏安、恒电流充放电和交流阻抗等方法测试了其电化学性能。结果表明,随着反应时间的延长, Co_3O_4材料的晶粒尺寸增大,形貌由不规则颗粒状变为正立方体,其比电容不断降低。在电流密度为0.2 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为153.3 F·g~(-1)、 99.3F·g~(-1)和51.1 F·g~(-1)。当电流密度从0.2 A·g~(-1)增大到1.8 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为96.3 F·g~(-1)、 91.3 F·g~(-1)和27.1 F·g~(-1),其比电容保持率分别为62.8%、 91.9%和53.0%。水热反应5 h所制备的Co_3O_4材料具有最好的比电容。  相似文献   

12.
本文研究制备一种CoNiO_2/碳纳米复合材料的方法。采用X-射线粉末衍射仪(XRD)和场发射电子显微镜(FESEM)表征产物的相结构与形貌,结果表明获得了CoNiO_2/碳纳米复合材料。复合材料的电化学性能采用循环伏安法(CV)和单电极充放电测试。将复合材料、活性炭(AC)和PVA-KOH电解质膜组装成不对称超级电容器,电性能测试结果表明在充放电电流密度为12 mA·cm~(-2)下其比电容最高达670 F·g~(-1)并稳定保持2000个循环;经过16000次循环后,其比电容仍有482.79 F·g~(-1),显示出高的比电容和长的循环稳定性。  相似文献   

13.
超级电容器作为一种新型的储能器件受到了广泛关注。隔膜作为其重要组成部分承担着阻隔电子和传输电解质离子的双重作用。本论文采用环境友好、可再生、可降解的大豆分离蛋白为基体,结合性能优异的氧化石墨烯(GO)制备了一系列SPI/GO复合膜并负载Li_2SO_4构建了双电层超级电容器,超级电容器具有优良的电化学性能,在电流密度为1.0 A·g~(-1)电流密度下,比电容值可达到110 F·g~(-1),能量密度高达8.89W·h·kg~(-1)。  相似文献   

14.
为了改善活性炭纤维的电化学性能、提高比电容,以硝酸镍和硝酸钴为金属源、尿素为碱源,采用水热法对一步活化法制备出的PAN基活性炭纤维(ACF)进行修饰,使其表面均匀负载海胆状的镍钴氧化物(ACF/NiCo_2O_4),通过扫描电镜、X射线衍射等对样品进行形貌和成分表征,采用三电极体系对材料进行电化学性能测试。结果表明,在1 A/g的电流密度下,其质量比电容达到469. 4 F/g,而电压降只有-0. 004 5 V,恒流充放电循环5 000圈后,其电容保持率为97. 87%,证明ACF/NiCo_2O_4材料具有较大的比电容和良好的循环稳定性,可用作超级电容器电极材料。  相似文献   

15.
《山东化工》2021,50(17)
电解液是超级电容器不可或缺的重要组成部分,水系电解液由于导电率高、安全性好且成本低而被广泛使用。本文以商品化碳分子筛为前驱体,采用KOH活化法制备了一种多孔碳材料AMS,并研究了其在KOH、K_2SO_4、KNO_3、NaNO_3、LiNO_3、KCl等6种水系电解液中的电化学性能。 AMS在KOH电解液中具有108 F·g~(-1)的高比容量,在5 A·g~(-1)的高电流密度下比电容为85 F·g~(-1),电容保持率为78%。发现电解质水合离子尺寸、离子电导率是影响AMS在水系电解液中电容性能的主要因素,水合离子尺寸越小、电解质离子导电性越大,电极材料更容易获得优异的电容性能。  相似文献   

16.
作为一种高性能新型储能器件,超级电容器具有功率密度高、充电时间短、绿色环保等诸多优点,决定超级电容器性能的关键因素是电极材料的性能。以煤为原料,通过高温热处理、化学氧化及等离子体还原技术制备得到煤基石墨烯;进一步将煤基石墨烯与聚丙烯腈(PAN)通过静电纺丝技术复合制备得到煤基石墨烯/炭纳米纤维(PM-CG)复合材料,以期借助于石墨烯所具备的高导电性、电子迁移率等性能获得具有优良电化学性能的电极材料。采用物理吸附仪、扫描电镜以及透射电镜等仪器对所制备的炭纳米纤维进行了表征,并通过电化学工作站研究了其作为超级电容器电极材料的电化学性能。结果表明,煤基石墨烯成功掺杂到炭纳米纤维中,所制备的PM-CG复合材料在6 mol/L KOH电解液中的比电容值可达225.1 F·g~(-1),是同样条件下纯PAN炭纳米纤维比电容值的2.57倍。  相似文献   

17.
本文通过使用一种简单有效的电沉积工艺,利用一维MnO_2纳米线成功构筑了结构稳定的三维丝网状MnO_2/r GO/NF复合电极材料。经结构表征可知,丝网状MnO_2纳米线在无任何粘结剂的情况下,均匀的原位生长在具有自支撑结构的三维rGO/NF表面。该方法制备的复合电极在0.5A·g~(-1)的电流密度下测得比电容为213F·g~(-1),当电流密度增加至10A·g~(-1)时,倍率性能为95%。循环测试5000圈(1A·g~(-1)),电容保持率为92.5%。复合电极材料上述性能主要归因于丝网状MnO_2的多孔结构与赝电容的协同作用,为反应提供了足够的电化学活性位点和稳定的结构,从而使其成为构建高性能储能器件的一种极具开发潜力的电极材料。  相似文献   

18.
超级电容器作为一种新型的储能器件,近年来已经成为电化学储能领域的研究热点。在各种电极材料中,过渡金属氧化物是较理想的选择,这是由于它们在电极/电解液界面可发生快速可逆的法拉第氧化还原反应。本文采用水热法通过调剂反应源镍、钴元素的比例获得不同比例的Ni-Co双金属氧化物纳米棒。结果表明,双金属氧化物Co1.29Ni1.71O4和NiCo_2O_4双金属氧化物的比电容值明显高于单金属NiO和Co_3O_4,表现出较好的倍率特性。因此,双金属氧化物的实施为解决过渡金属氧化物循环性能和倍率特性不足的问题提供了一条新的途径。  相似文献   

19.
将氧化石墨(GO)还原为石墨烯(GNS),以高锰酸钾(KMnO_4)和硫酸锰(MnSO_4)为锰源,在石墨烯基体上合成二氧化锰/石墨烯(MnO_2/GNS)复合电极材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)对材料的微观形貌和晶体结构进行表征;将电极材料制备成复合电极片并组装成对称型超级电容器,采用恒流充放电对其进行电化学性能测试。结果表明,复合电极材料在5A·g~(-1)的电流条件下,比容量达到291.5 F·g~(-1),在循环200次后电容保持率达到95.6%,具有良好的电化学性能。  相似文献   

20.
采用水热合成和200℃、300℃和400℃热出的方法,成功的制备δ-MnO_2复合多壁碳纳米管和α-MnO_2复合多壁碳纳米管超级电容器电极材料。运用XRD,SEM,TEM对实验制备的复合材料结构和形貌的分析。实验结果表明δ-MnO_2复合多壁碳纳米管和α-MnO_2复合多壁碳纳米管材料电极表现出非常理想的比电容,在扫描速度为10m v-1和电解液为1mol·L~(-1)Na_2SO_4,比电容分别为82F g~(-1)和102.5F g~(-1)。充放电循环1000次,δ-MnO_2复合多壁碳纳米管比容量电极能够保持在86.3%和α-MnO_2复合多壁碳纳米管电极保持在66.1%。δ-MnO_2复合多壁碳纳米管和α-MnO_2复合多壁碳纳米管材料具有优异的电化学性能,是一种很有前景的超级电容器电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号