首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备了Fe_3O_4@BSA磁性纳米功能材料,包裹在Fe_3O_4纳米粒子表面的牛血清白蛋白(BSA)主要起到分散剂和稳定剂的作用。通过傅里叶变换红外光谱、X射线衍射、透射电子显微镜及热重分析对合成的Fe_3O_4@BSA纳米粒子进行了表征和分析。结果表明,制备的Fe_3O_4@BSA纳米粒子中BSA质量分数约为18.9%。体外成像结果表明,随着Fe_3O_4@BSA纳米粒子浓度的增加,T2成像信号增强,具有明显的阴性造影效果。于0.5 T外磁场下,测得Fe_3O_4@BSA纳米粒子的横向弛豫率(transverse relaxivity,r2)为148.18 L/(mmol·s)。结果表明,Fe_3O_4@BSA纳米粒子能够作为一种潜在的T2类磁共振成像造影剂。  相似文献   

2.
采用共沉淀法制备了四氧化三铁纳米粒子(Fe_3O_4),并在Fe_3O_4纳米粒子表面修饰上了氨基。透射电子显微镜(TEM)和傅里叶变换红外光谱(FTIR)显示,纳米粒子分散性良好,粒径约为10 nm,氨基成功修饰在了纳米粒子的表面。以胃癌SGC-7901为目的细胞,依据RGR值考察了Fe_3O_4-NH_2纳米粒子的细胞毒性等级,结果显示,在一定浓度范围内,细胞死亡率与Fe_3O_4-NH_2纳米粒子的浓度成正相关,低于51.2μg/m L时,Fe_3O_4-NH_2纳米粒子的细胞毒性相对较小,Fe_3O_4-NH_2纳米颗粒具有较好的生物相容性。  相似文献   

3.
水中重金属的脱除是污水处理中的重要内容。吸附法是一种除去水中重金属污染的简单高效的方法。磁性吸附剂具有成本低、无二次污染、吸附率高、便于分离和再生等特点,在污水处理上有着重要的应用前景。本文采用溶剂热法制备磁性Fe_3O_4纳米粒子,考察了外部条件对磁性Fe_3O_4纳米粒子生成的影响,确定了制备磁性Fe_3O_4纳米粒子的最佳条件。制备了Fe_3O_4@SiO_2复合微球,通过将壳聚糖键合到颗粒表面并接枝三乙烯四胺改性,得到氨基修饰的磁性Fe_3O_4纳米粒子。  相似文献   

4.
团簇状的Au@Fe_3O_4纳米复合粒子采用两步法进行合成。首先通过共沉淀法合成柠檬酸修饰的Fe_3O_4纳米粒子;其次以柠檬酸纳为温和的还原剂将HAuCl_4快速还原为Au纳米粒子而沉积在Fe_3O_4的表面。并考察了HAuCl_4及柠檬酸修饰的Fe_3O_4纳米粒子用量对合成过程的影响。采用紫外-可见分光光度计(UV-vis)、动态光散射仪(DLS)及透射扫描电镜(TEM)等测试手段对所制备的纳米粒子进行了表征。结果表明:当V(1%HAuCl_4)=1.8 m L,m(柠檬酸修饰的Fe_3O_4)=12.5 mg时,Au@Fe_3O_4纳米复合粒子的中心Au纳米粒子的粒径大小为20~50 nm左右而周围包覆的Fe_3O_4纳米粒子的大小为10 nm左右,且其在水中能够稳定的存在3个月而粒径大小无明显的变化。  相似文献   

5.
本文分别以溶胶-凝胶法合成聚合氯化铝-壳聚糖复合物、以共沉淀法制备纳米四氧化三铁,再将PAC-CTS复合物负载于纳米Fe_3O_4上,得到磁絮凝剂PAC-CTS/Fe_3O_4。利用傅立叶红外光谱仪、X-射线衍射仪、扫描电子显微镜以及粒度分析仪等对其结构特点、表面形态、粒径分布进行表征分析。结果表明:制得的Fe_3O_4的表面形态较为粗糙,粒径分布集中在450~1200 nm;PAC-CTS复合物已成功附着到纳米Fe_3O_4的表面。将其应用于生活污水的处理中,COD、浊度的平均去除率分别达到74.77%、65.08%。  相似文献   

6.
先以Fe Cl_2和Fe Cl_3为原料,用化学共沉淀法制备了Fe_3O_4纳米粒子,再在其表面包覆Si O_2制得Fe_3O_4@Si O_2颗粒,然后将Fe_3O_4@Si O_2颗粒与水性环氧-丙烯酸酯乳液混合制备了复合涂层。采用透射电镜、红外光谱仪和X射线衍射仪表征了Fe_3O_4纳米粒子改性前后的形貌和晶体结构。通过塔菲尔极化曲线和浸泡试验考察了纳米粒子对复合涂层在自来水、3.5%(质量分数)HCl、3.5%Na OH和3.5%Na Cl溶液中耐蚀性的影响,并探讨了涂层的防腐机理。Si O_2成功包覆到Fe_3O_4粒子表面,提高了其与水性环氧–丙烯酸酯乳液的相容性,显著改善了复合涂层的防腐性能。  相似文献   

7.
本文通过水热法合成了Fe_3O_4磁性纳米颗粒,采用3-氨丙基三甲氧基硅烷(APTMS)对Fe_3O_4颗粒进行表面修饰,得到氨基化磁性微粒,并表征其性能。并用氨基化Fe_3O_4磁性纳米粒子构建铜离子吸附体系。实验结果表明,Fe_3O_4纳米粒子和功能化Fe_3O_4纳米粒子的磁饱和强度值(M)分别为78和59emu·g~(-1)。最终确定的最优工艺组合为:APTMS@Fe_3O_4添加量2mL,温度30℃,吸附时间15min。  相似文献   

8.
首先通过共沉淀法、还原沉淀法和水热法制备Fe_3O_4纳米粒子,对其进行表面改性,防止粒子之间的团聚,然后采用溶胶-凝胶法,以Fe_3O_4纳米粒子为种子,在醇和水的混合体系中,碱性条件下催化正硅酸乙酯水解,生成物包覆在磁性纳米颗粒表面,制备小粒径核壳结构的二氧化硅磁性复合微球。利用X射线衍射仪对所制备的二氧化硅磁性复合微球的粒径和物相组成进行表征。实验结果表明二氧化硅磁性复合微球在室温下表现出良好的稳定性。  相似文献   

9.
纯粹的磁性Fe_3O_4纳米粒子易发生不可逆的硬团聚且易被空气氧化或者被酸腐蚀而破坏,硅壳包覆可以保护Fe_3O_4不被酸蚀,但壳层太厚会影响其磁性。本文针对采用油包水的微乳液法将磁性Fe_3O_4纳米粒子的表面包覆上不同厚度的硅壳,制备出一系列不同壳层厚度的硅壳磁性Fe_3O_4纳米粒子,并设计实验测试其磁性和对酸稳定性。结果表明,所制备的不同厚度硅壳磁性纳米粒子在水中都具有良好的分散性,但随着壳层厚度的变化,其磁性和对酸的稳定性有所变化。综合比较,在正己醇、表面活性剂曲拉通(Triton X-100)和环己烷为1:1:4的体积比时加入Fe_3O_4含量为6.2%的磁流体所制备的硅壳磁性Fe_3O_4纳米粒子为最优。  相似文献   

10.
邢艳  呼国茂  王燕  马向荣 《工业催化》2018,26(12):50-54
以FeSO_4·7H_2O为单一铁源,浓氨水为沉淀剂,柠檬酸钠为表面改性剂利用简单回流法快速合成Fe_3O_4磁性纳米粒子。考察反应时间,反应温度及浓氨水加入方式对合成Fe_3O_4磁性纳米粒子的影响,并利用动态光散射仪、傅立叶红外射线光谱仪及透射扫描电镜等对合成的Fe_3O_4磁性纳米粒子进行表征。结果表明,以柠檬酸钠为表面改性剂,逐滴加入浓氨水,反应温度为(70~80)℃和反应时间为6 min时,获得的Fe_3O_4磁性纳米粒子在水中具有良好的分散性及磁响应性。Zeta电位和红外光谱同时表明,柠檬酸钠成功地吸附于Fe_3O_4磁性纳米粒子的表面(Fe_3O_4@SC),且Zeta电位值为-31.3 mV;透射扫描电镜显示获得的Fe_3O_4@SC磁性纳米粒子呈球状结构,粒径约为10 nm。  相似文献   

11.
采用溶剂热法,以巯基乙酸铁为前驱体合成粒径小、单分散、超顺磁性的Fe_3O_4纳米颗粒。利用透射电子显微镜(TEM)、X-射线衍射仪(XRD),傅立叶变换红外光谱仪(FTIR)、振动样品磁强计(VSM)对产物进行了表征。结果表明,产物为球形颗粒,形貌规则,平均粒径在6 nm左右,为立方晶体结构,具有超顺磁性。考察了反应时间和温度对Fe_3O_4纳米粒子磁性能的影响,实验结果显示随着时间延长、温度升高,Fe_3O_4纳米粒子的饱和磁化强度均逐渐增强。  相似文献   

12.
刘爱燕  丁晨  张小燕  张岐  龚玉珍  黄燕 《精细化工》2012,29(5):429-433,467
采用简单经济(与传统微乳法、热分解法等比较)的方法制备出一种磁性N-羧甲基壳聚糖造影剂。首先对壳聚糖的氨基进行羧甲基化制备N-羧甲基壳聚糖,然后在其链上采用原位生成Fe3O4纳米粒子的方法制备出磁性N-羧甲基壳聚糖,并对其进行了表征及性能的测试。热重分析结果表明,Fe3O4的生成量与N-羧甲基壳聚糖中羧甲基的含量有关,其生成量随着羧甲基含量的增加而增加,但当羧甲基的含量增加到一定程度时,Fe3O4的生成量达到某一峰值。透射电镜结果表明,生成的Fe3O4纳米粒子的粒径约为5~10 nm。磁共振成像结果显示,该磁性N-羧甲基壳聚糖的横向弛豫率为82.82 mmol/(L.s),高于超顺磁性氧化铁作为磁共振成像造影剂时R2需大于62 mmol/(L.s)的最低标准,可作为潜在的磁共振成像阴性造影剂。  相似文献   

13.
磁性四氧化三铁(Fe_3O_4)纳米粒子以其比表面积大、低毒性和良好的生物相容性等物理化学性质而得到广泛关注。采用共沉淀法制备磁性四氧化三铁(Fe_3O_4)纳米粒子,并通过单因素实验优化制备工艺。结果表明,制备Fe_3O_4纳米粒子的优化工艺参数为:Fe~(2+)与Fe~(3+)浓度比为1.00∶1.50、铁盐浓度为0.30 mol·L~(-1)、反应温度为60℃、 NaOH溶液的浓度为0.25 mol·L~(-1)。该条件下,Fe_3O_4纳米粒子形貌为球形,平均粒径为65.15 nm,饱和磁强度为63.5 emu·g~(-1)。  相似文献   

14.
采用化学共沉淀方法制备Fe_3O_4磁性粒子,并使用油酸和十一烯酸对其进行表面改性,然后采用一步细乳液聚合法制备含有羧基官能团的Fe_3O_4/P(St/ACPA)磁性高分子纳米球,对磁流体和磁性高分子纳米球进行性能表征。结果表明,改性的Fe_3O_4磁流体分散性好,粒径均一,在室温下呈超顺磁性,磁含量为68.5%(w),饱和磁化强度为51.3emu/g;Fe_3O_4/P(St/ACPA)磁性高分子纳米球成球性好,粒径为70 nm,磁含量为39%(w),饱和磁化强度为27.9 emu/g。  相似文献   

15.
采用溶剂热法制备了Fe_3O_4纳米粒子,再经两步法制备了核壳结构Fe_3O_4@PDA@BSA纳米复合材料,并利用X-射线衍射仪(XRD)、透射电镜(TEM)、振动样品磁强计(VSM)对样品形貌及磁性能进行了表征。结果表明,所制备的Fe_3O_4纳米粒子粒径为3~21nm;核壳结构Fe_3O_4@PDA@BSA纳米复合材料的壳层厚度为10~20nm,比饱和磁化强度为58.8emu·g-1,具有良好的磁性能和生物安全性。该方法简单、反应条件温和、绿色环保,具有较好的适用性。  相似文献   

16.
本实验通过共沉淀法和水热法制备并表征四氧化三铁磁性纳米颗粒。考察了不同方法对生成物的影响作用。结果显示,两种制备方法到的产物均为反尖晶石结构,结晶度高;共沉淀法得到的Fe_3O_4纳米颗粒主要为大小较均匀的球形结构,纳米颗粒粒径约为12~15 nm,产物团聚现象较为明显;水热法制备的Fe_3O_4纳米颗粒为准球形状,粒径分布均匀,与共沉淀法合成Fe_3O_4纳米颗粒相比,水热法合成的Fe_3O_4纳米颗粒粒径明显增大,约到20 nm左右,团聚现象有缓解。  相似文献   

17.
《应用化工》2022,(2):294-297
采用溶剂热法制备Fe_3O_4纳米粒子,通过MPS和聚丙烯酸修饰,使其表面羧基化,再与NTA-Ni(2+)螯合,制备Fe_3O_4/MPS/PAA/NTA-Ni(2+)螯合,制备Fe_3O_4/MPS/PAA/NTA-Ni(2+)磁性复合纳米粒子。利用透射电镜、激光粒度仪、红外光谱进行表征。结果表明,Fe_3O_4/MPS/PAA/NTA-Ni(2+)磁性复合纳米粒子。利用透射电镜、激光粒度仪、红外光谱进行表征。结果表明,Fe_3O_4/MPS/PAA/NTA-Ni(2+)磁性复合纳米粒子的形貌为球形,且较为分散,其平均水合粒径为440 nm,Zeta电位为-15.8 mV,红外光谱证实了其化学结构。对组氨酸标签蛋白的分离能力为15.6μg蛋白质/mg磁性材料,说明此金属螯合吸附剂对组氨酸标签蛋白的选择性吸附有一定的意义。  相似文献   

18.
利用O-羧甲基壳聚糖(O-CMC)的表面多种官能团(如-NH_2,-OH,-COOH等)与胆酸(CA)进行化学修饰得到两亲性共聚物,再以反溶剂法将Fe_3O_4和阿霉素(DOX)包埋在两亲性共聚物疏水的核中,制备两亲性的磁性壳聚糖载药纳米粒子,并对磁性载药纳米粒子的形貌、粒径大小、磁性、药物控释等进行了研究。结果表明:磁性壳聚糖纳米粒子有较高的药物包埋效率(92.3%),与自由阿霉素相比,磁性复合物具有明显的缓释作用和pH响应性;同时,有较好的超顺磁性。这些说明制备的疏水修饰磁性壳聚糖载药纳米粒子具有双重响应性,有望作为药物输送载体对肿瘤进行实时跟踪、诊断和治疗。  相似文献   

19.
采用聚乙二醇(PEG)将合成的Fe_3O_4纳米粒子进行包覆制备了亲水性磁流体(Fe_3O_4@PEG),采用共沉淀法将Fe_3O_4@PEG与三聚氰胺脲醛树脂(MUFRs)预聚物作用制得磁性三聚氰胺脲醛树脂,并利用X射线衍射仪、傅里叶变换红外光谱仪、扫描电子显微镜等对磁性三聚氰胺脲醛树脂进行了表征。结果表明:合成的Fe_3O_4为纳米粒子;高分子包覆对Fe_3O_4的晶体结构和晶粒粒径没有明显影响;当Fe_3O_4@PEG与MUFRs的质量比为2∶1时,磁流体包覆完整,制得的磁性三聚氰胺脲醛树脂微球外观光滑,球形度好且粒径分布均匀。  相似文献   

20.
为了获得水溶性Fe_3O_4纳米粒子,以聚乙二醇(PEG)磷酸酯为亲水性配体,在甲苯/四氢呋喃/水三元混合溶剂体系下通过快速配体交换法将油酸包覆的油溶性磁性Fe_3O_4纳米粒子转变成聚乙二醇磷酸酯包覆的水溶性Fe_3O_4纳米粒子。考察了四氢呋喃等溶剂在实现快速配体交换中所起到的作用。利用透射电子显微镜(TEM)、动态光散射(DLS)、X射线粉末衍射仪(XRD)、傅立叶红外光谱仪(FTIR)、振动样品磁强计(VSM)对磁性Fe_3O_4纳米粒子进行了分析表征。结果表明:四氢呋喃可以促进PEG磷酸酯与Fe_3O_4纳米粒子表面的有效接触并使得油酸分子从纳米粒子表面快速地脱附下来,此外,还消除了配体交换过程中出现的乳化效应。四氢呋喃的应用实现了快速配体交换法制备水溶性PEG磷酸酯包覆的磁性纳米粒子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号