首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用高温固相合成法二次灼烧工艺制备锂离子电池正极复合材料LiFePO4/C。经300℃和650℃二次灼烧,得到了从纳米到亚微米尺寸的LiFePO4和LiFePO4/C复合材料。X射线衍射(XRD)结果表明,所得到的LiFePO4和LiFePO4/C样品具有单一的橄榄石型晶体结构,且具高纯度。在多种碳源(如乙炔黑、Vulcan XC-72碳黑、鳞状石墨、各向异性石墨和葡萄糖)制备的LiFePO4/C复合材料中,以葡萄糖为碳源合成的样品具有最好的电化学性能。在电池工作温度由室温提高到40℃时,由于复合材料的电子电导率增大和锂离子在材料中的扩散速度加快,电池的充放电循环性能明显提高。  相似文献   

2.
采用高比表面积的石墨烯纳米片(GNP)对顺丁橡胶(BR)进行改性研究,考察不同质量份的GNP对BR的影响。采用扫描电镜分析GNP在基体中的分散情况以及与基体相容性,通过万能拉伸试验机和动态热力学分析仪的测试考察GNP填料对复合材料力学性能的影响。研究结果表明:GNP与BR具有良好的相容性,且当GNP用量为1质量份(BR用量为100质量份,下同)时,复合材料的力学性能最优,断裂强度可达9.11 MPa,断裂伸长率达到221%,撕裂强度为46 kN/m,与未添加GNP改性的复合材料相比断裂强度和撕裂强度分别提高了45%和24%;复合材料在不同频率范围内的储能模量均明显提高,但过量的GNP(GNP用量大于1质量份)对BR的增强效果不明显。  相似文献   

3.
以LiH2PO4、Fe2O3及葡萄糖为原材料,采用高温高能球磨法(HTHEBM)制备了性能优良的碳包覆磷酸铁锂(LiFePO4/C)正极材料.在该法中,高能球磨将机械能转变为热能,有效降低了烧结温度且减少了烧结时间,在600℃下9 h烧结后获得纯相的LiFePO4/C正极材料.利用X射线衍射、扫描电镜、透射电镜、电化学...  相似文献   

4.
在水热法合成LiFePO4和HF刻蚀合成Mxene(金属碳/氮化物)的基础上,通过湿化学法制备了不同Mxene含量的Mxene/LiFePO4复合正极材料,并对其物相、形貌和电化学性能进行了研究。结果表明,Mxene纳米片在LFP颗粒中的负载,使得LiFePO4和Mxene之间通过“点到面”的导电模式在复合电极中构建高效导电网络,提高LiFePO4正极材料的电子导电性。同时,Mxene二维层状结构的特点缩短了锂离子在正极材料中的扩散路径。因此,Mxene/LiFePO4正极材料表现出良好的电化学性能,包括离子导电性和电子导电性等。其中,3%Mxene的负载,在0.1、1和5C充放电倍率下,首次放电比容量分别为159.3、136.8和100.2 m Ah·g-1,表现出良好的循环稳定性。  相似文献   

5.
以Fe(NO3)3、LiCH3COO和NH4H2PO4为原料,葡萄糖为还原剂,通过水热反应辅以热处理过程制备了单分散的LiFePO4/C球。XRD结果表明得到了具有橄榄石结构的LiFePO4,SEM显示LiFePO4球的球茎在5μm左右。LiFePO4球的形成与葡萄糖的脱水缩聚碳化有关。  相似文献   

6.
采用湿球研磨-喷雾干燥法合成了纳米石墨包覆的球形LiFePO_4材料。该材料呈现了大小较为均匀的球形颗粒,颗粒度较小。性能测试表明该材料具有优异的电化学性能,最佳样品C在0.1 C时的放电比容量为160.9 m A·h·g~(-1),在高倍率5 C下的比容量仍为120.5 m A·h·g~(-1),显示了良好的比容量维持率。该法制备细小而致密的球形颗粒,并通过纳米石墨包覆增强导电性,大大提高了LiFePO_4材料的电化学性能,此方法简便、高效,有工业化应用的前景。  相似文献   

7.
导电填料石墨烯纳米片(GNPs)通过高速混合包覆于聚苯硫醚(PPS)树脂基体颗粒表面,再通过热压成型制备出具有完善隔离结构的PPS/GNPs复合材料。采用光学显微镜、扫描电子显微镜、电导率测试、电磁屏蔽性能测试对复合材料导电网络形貌、电性能和电磁屏蔽性能进行表征。结果表明,复合材料具有完善的隔离结构导电网络;隔离结构复合材料具备优异的电导率和电磁屏蔽效能(EMI SE),当GNPs含量为3.0 %(质量分数,下同)时,复合材料的电导率和EMI SE分别为25.6 S/m和41.0 dB。  相似文献   

8.
以Na2SnO3.4H2O为原料,CO(NH2)2为表面活性剂,采用水热法制备了SnO2纳米球。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、比表面积测试仪(BET)及电化学测试仪等研究材料的结构、形貌、比表面积及电化学性能。结果表明,制备的SnO2材料具有较好的球体形貌,颗粒分散均匀,形状规准,半径约为400 nm,结构呈典型的金红石相。在电压范围为0.01~3 V, 200 mA/g的电流密度下进行充放电测试,首次放电比容量为2206.6 mAh/g,50次循环后,放电比容量保持在440 mAh/g,具有较好的循环性能。  相似文献   

9.
锂离子电池正极材料LiFePO4的研究进展   总被引:2,自引:0,他引:2  
从LiFePO4的结构出发,分析了该材料所特有的优越性能以及存在的缺陷,阐述了物理掺杂和体相掺杂两类改性方法的特点和取得的成效。在此基础上,介绍了高温固相法、共沉淀法等方法合成LiFePO4的最新研究进展,探讨了各种制备方法的优缺点,并简要评述了LiFePO4未来发展的前景以及为使该材料走向实用化应注重的研究方向。  相似文献   

10.
利用正交实验L33(9)探讨磷酸铁锂正极的制备工艺对不同倍率下电极工作性能的影响,并对电解液的匹配性进行研究.采用不同活性物质、导电剂和粘结剂配比制成磷酸铁锂正极,应用不同电解液组装成锂离子电池,选用17mA·g-1和170 mA·g-1的工作电流密度对电池进行充放电循环测试.研究结果表明,在17mA·-1倍率充放电条件下,最佳电极制备工艺是:活性物质、导电剂和粘结剂的质量百分比为85∶7∶8,匹配的电解液为LiPF6/EC-DEC-DMC(体积比1∶1∶1,浓度1mol·L-1);在170 mA·g-1倍率充放电条件下,活性物质、导电剂和粘结剂的最佳质量百分比为80∶12∶8,与其相匹配的电解液为LiPF6/EC-DMC(体积比1∶1,浓度1 mol·L-1).  相似文献   

11.
掺杂元素对锂离子电池正极材料LiFePO4的影响   总被引:1,自引:2,他引:1  
为提高锂离子电池正极材料LiFePO4的充放电性能,用Mg,Al,V和Ti对LiFePO4进行掺杂。研究了掺杂元素的种类和用量对LiFePO4性能和结构的影响。可用高温固相反应制备单相LiMxFe1-xPO4 (M=Mg,Al,V和Ti)。在LiMxFe1-xPO4 材料中,LiV0. 05Fe0. 95PO4具有比LiFePO4更好的电化学性能,用80mA/g的电流进行充放电时,第二次放电比容量为130. 429mA·h/g,循环20次后为131. 196mA·h/g。  相似文献   

12.
为减少水滑石(Layered Double Hydroxide, LDH)用作电极材料时的体积膨胀效应造成电化学性能衰减,本文利用石墨烯纳米片包覆CoNi-LDH制备复合材料。该材料被用作负极材料时,比容量相对于LDH有明显的改善。在电流密度为0.05和2.0 A·g-1时,所达到的首次放电容量是1388、495 mAh·g-1。在0.05 A·g-1的电流密度下,经过20个循环仍保持近乎70%的容量保持率。  相似文献   

13.
以氧化石墨烯和SnCl2为原料,通过微波水热法合成了石墨烯/SnO2复合材料(GS),以过硫酸铵为引发剂,通过吡咯在Si粉表面原位氧化聚合制备了Si@PPy包覆结构(SP),最后通过微波水热组装法制备了石墨烯/SnO2/Si@PPy复合材料(GSSP)。采用SEM、TEM、XRD、Raman和BET对GS、SP和GSSP材料的形貌和结构进行表征,并以GSSP复合材料为负极组装半电池进行倍率、循环、CV和EIS等电化学性能测试。结果表明:GSSP复合材料具有优异的倍率性能,在100 mA/g电流密度下,放电和充电的平均比容量分别为948.44和869.63 mAh/g。1000 mA/g电流密度下,经过400次循环放电和充电的比容量保持率高达90.69%和89.34%。  相似文献   

14.
本文以SnC_2O_4、GO、柠檬酸和尿素为原料,通过溶剂热和热处理相结合的方法制备出SnO_2纳米粒子/氮掺杂石墨烯复合材料(SnO_2NPs/NG)。用作锂电负极时,SnO_2NPs/NG复合材料在100 mA·g~(-1)的电流密度下循环100次后,其容量为1238 mAh·g~(-1),即使在8 A·g~(-1)的大电流密度下,其容量仍高达206 mAh·g~(-1),显示出了较好的循环和倍率性能。  相似文献   

15.
以聚乙二醇(PEG)作为相变工作物质,以具有优异导热性能的石墨烯纳米片(GNPs)作为导热填料,通过熔融共混法制备出一系列不同GNPs含量的PEG/GNPs复合相变材料。采用激光导热仪、差示扫描量热仪、扫描电子显微镜、X射线衍射仪、红外光谱仪等测试PEG/GNPs复合相变材料的导热性能、热物性、微观形貌、结晶性能及化学组成。结果表明,GNPs均匀分散于PEG基体中,形成能够加快热量传递的导热通路,复合材料体系的导热系数得以显著提高,而相变焓仅仅略微下降,当GNPs含量为2%时,复合材料体系的导热系数是PEG的249.7%,而相变焓损失率却仅为3.9%;PEG与GNPs二者间仅是物理吸附,并未发生化学反应,复合材料体系的结晶性能良好;PEG与GNPs复合相变材料的热响应速度更快,能源利用率因而更高。  相似文献   

16.
以氧化石墨烯和抗坏血酸为包覆碳源,采用共沉淀-焙烧法制备了LiFePO4/G和LiFePO4/C正极材料,并通过X-射线衍射图谱(XRD),扫描电镜(SEM)对合成材料进行结构及形貌分析,并采用循环伏安(CV)、恒电流充放电等表征手段对合成材料进行电化学性能测试。结果表明,石墨烯和碳颗粒的引入没有改变LiFePO4橄榄石晶体结构,石墨烯在细化颗粒和均匀分布上的效果优于普通碳颗粒,使LiFePO4/G表现出更加优越的电化学性能,在0.1C倍率时的放电容量为134 mAh·g-1,充放电循环20次后容量保持率可达到98.8%。  相似文献   

17.
向汝明 《广东化工》2009,36(9):169-169,170
以高能球磨后的MnO2为前躯体,用水热法成功合成了平均粒径为60nm的LiMn2O4纳米微粒。实验结果表明,所合成的纳LiMn2O4在0.2℃倍率放电条件下,首次放电比容量为122mAh/g,样品在经过20次循环后容量下降约为5%左右,表现出较好的电化学性能。  相似文献   

18.
LiFePO4/C正极材料中试生产工艺及产品性能研究   总被引:1,自引:0,他引:1  
采用模板-高温固相技术中试生产LiFePO4/C复合正极材料,并用该材料组装成品电池。通过XRD、SEM及粒度分析对材料进行物理性能分析,通过循环性能、倍率放电性能和过充性能对电池进行电化学及安全性能研究。结果表明,该材料组装的成品电池循环600次后放电容量仍保持在标准容量的90%以上,在大电流放电下,容量减小不大。  相似文献   

19.
铂(Pt)及铂基材料是改善氧还原反应(ORR)和甲醇氧化反应(MOR)中动力学的高效催化剂,但Pt的低储量和高成本限制了其大规模应用,设计新型的无Pt高效电催化剂被认为是开发商业化燃料电池的核心挑战.采用MCM-22分子筛为硬模板,蔗糖为碳源,制备出介孔石墨烯纳米片(MGN),并且采用简单的化学还原法将小尺寸的PdCu...  相似文献   

20.
锡基负极材料的理论储锂容量高,但循环稳定性和倍率性能差,难以满足实际应用的需要。我们以四氯化锡、二硫化碳、氨水、石墨烯为原料,采用水热-热处理相结合的方法,合成了氮硫共掺杂石墨烯/硫化锡复合材料(SnS_2@N,S-RGO)。该材料中,硫化锡纳米粒子均匀地生长在石墨烯上,增大了其比表面积,提高了其稳定性和导电性。因此,该复合材料的储锂容量高、倍率性能和循环稳定性好,有望用于高性能锂离子电池。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号