首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partially acidulated phosphate fertilizers are manufactured either by direct partial acidulation of phosphate rocks (PRs) with sulphuric and/or phosphoric acid (directly acidulated PAPR) or indirectly by mixing reactive phosphate rocks (RPRs) with single superphosphate (SSP-RPR mixture). This form of low cost fertilizer manufacture is suitable for improving the agronomic value of unreactive PRs or production of high analysis fertilizers that can have agronomic values similar to fully acidulated phosphate fertilizers.The solubility characteristics of the directly acidulated PAPRs are affected by the type, composition and concentration of the acid used for acidulation, degree of acidulation, nature and fineness of PR and the method of manufacture. In general, partial acidulation with phosphoric acids which contain minimum amounts of metallic impurities acidulates more PR and results in more soluble P in the product. In the case of SSP-RPR mixtures made by adding RPR to immature SSP, the nature of PR used for SSP manufacture and the time of addition of RPR to ex-den SSP mixture affects the quality of the product. In order to minimize the selective reaction of the RPR with residual acid present in the ex-den SSP reaction mixture, RPR should not be added until PR acidulation (used for SSP) is essentially complete.The agronomic value of partially acidulated phosphate fertilizers is affected by the amount of water soluble P and the solubility of residual PR. None of the single extraction tests such as 2% citric acid, 2% formic acid and neutral ammonium citrate appear to be appropriate as indicators of plant available P in these fertilizers. Double extraction procedures which remove both the soluble P and the residual P have been investigated, but need to be correlated with agronomic data before they can be adopted as quality tests.  相似文献   

2.
The 2% citric and formic acid solubilities of phosphate rock residues extracted from partially acidulated materials (20 and 35% acidulation) manufactured from two phosphate rocks (both ground and unground) in the presence of monocalcium phosphate, monosodium phosphate, calcium chloride, calcium sulphate, calcium carbonate, sodium carbonate and aluminium and iron sulphates have been examined. Such figures have been compared with previous results obtained for the equivalent unprocessed phosphate rocks. In general the effects of additives on the solubility of the phosphate rock residues were similar to those found for unprocessed phosphate rocks. However, the solubility figures were considerably lower for the 20% acidulated residues, while 2% formic acid solubilities for the 35% acidulated residues were also reduced. This would indicate that some deactivation of the phosphate rock had taken place during acidulation, the degree of which was dependent on the acidulation level and could be more readily observed in changes in 2% formic acid solubility than in 2% citric acid figures.  相似文献   

3.
Four greenhouse experiments were conducted using three soils to determine the availability to plants of P from unground North Carolina phosphate rock (PR) treated with 20% to 50% of the H3PO4 required for complete acidulation. The influences of soil P retention, P status, the method of preparation of partially acidulated phosphate rocks (PAPRs) and the granule size of the products were investigated. Perennial ryegrass was grown as the test plant for up to 8 months. Triple superphosphate (TSP) was used as the standard fertilizer and unground North Carolina rock was included for comparison.The dry matter yield and P uptake response curves showed that in all experiments PAPRs were markedly superior to the PR. P status of soils appeared to influence the effectiveness of PAPRs to a greater extent than P retention. In soils of low P status the degree of acidulation required for PAPR to be nearly or as effective as TSP was 50% whereas in a soil of high P status even 30% PAPR applied as a maintenance fertilizer was effective. There was a significant positive correlation between water soluble P of fertilizers and P uptake by ryegrass. However, in general PAPRs were more effective per unit of water soluble P than TSP. Granule size (< 1 mm and 1–2 mm) and method of preparation of PAPRs did not alter the effectiveness of PAPRs.  相似文献   

4.
Controlled-release phosphate fertilizers include phosphate rocks (PRs) for direct application, partially acidulated phosphate rocks (PAPRs) and thermal phosphates. Phosphate rocks contain apatite as the main P containing mineral, the composition and the chemical nature of which vary between PRs. Based on the solubility in chemical extractants PRs are broadly grouped into ‘reactive’ and ‘unreactive’. The ‘reactivity’ of PRs is influenced strongly by the extent of carbonate substitution for phosphate in the apatite minerals. Under certain soil and climatic conditions reactive PRs (RPRs) can be used as a source of P for direct application. Partially acidulated phosphate rocks (PAPRs) are produced either by direct partial acidulation of PRs with mineral acids or by mixing PRs with fully acidulated superphosphate reaction mixtures. Partial acidulation of PRs with H3PO4 generally results in higher water soluble P contents than those acidulated with H2SO4. Mixing of RPRs with superphosphate reaction mixtures sometimes results in the preferential consumption of free acid and thereby increases the amounts of residual unreacted PRs. Thermal phosphates are produced by either heating PRs below melting point both in the presence and the absence of silica (calcined phosphates) or heating PRs with silica above melting point (fused phosphate). These phosphates are alkaline in nature and hence suitable for acidic soils.  相似文献   

5.
Khouribga phosphate rock was partially acidulated with 50 and 70% of the required H2SO4 for complete acidulation. The unreacted rock residue was isolated by subsequent extractions with water and alkaline ammonium citrate solution. P solubility in 2% formic acid of this residues was reduced as compared to the original Khouribga phosphate rock. This loss in reactivity consistently increased with the degree of acidulation. Plant response to fertilizer application emphasized the negative effect of partial acidulation in an acid soil. Mixtures of superphosphate and phosphate rock were more effective than partially acidulated phosphate rock.Applications of apatitic P did not affect P efficiency on a neutral soil. Differences between mixed and partially acidulated phosphate rock could therefore not be observed. The effectiveness of the products was due to their content of acidulated P.Hydrolysis of monocalciumphosphate caused a further acidulation of the residual apatite in moist incubated granules. The extent of these reactions, however, was too low to improve P efficiency significantly.  相似文献   

6.
In a series of greenhouse experiments granulated phosphate fertilizers prepared by mixing triple superphosphate with phosphate rock and partially acidulated phosphate rock, ranging in their content of water souble P from 95 to 17 per cent of total P were applied to neutral and slightly alkaline (pH 6.9–7.8), sandy loam to clay soils ranging in calcium carbonate content from 2 to 35 percent. Dry matter yield of clover, alfalfa, millet or maize were obtained, P uptake determined and sodium bicarbonate extractable P in soil measured. In one field experiment triple superphosphate was compared to mixture of triple superphosphate and phosphate rock on maize. X ray difraction on one triple superphosphate — phosphate rock mixture and on one partially acidulated phosphate rock showed that both fertilizers contain mainly monocalcium phosphate and fluorapatite. After incubation in soil the dicalcium phosphate content rose and the monocalcium phosphate disappeared.Parameters received in greenhouse experiments and in the field indicate that phosphate fertilizers composed of superphosphate and up to 50 percent phosphate rock are as efficient source of P to plants on calcareous and slightly alkaline soils as superphosphate. If this indication would be proven in extensive field experimentation it would lead to savings in acid consumption and in fertilizer manufacturing plant capacity for calcareous soils.  相似文献   

7.
The agronomic effectiveness of unground North Carolina phosphate rock (PR) and partially acidulated phosphate rocks (PAPR) prepared by acidulation of the PR with 30%, 40% and 50% of the phosphoric acid needed for complete acidulation, was determined in a 4 year field experiment on permanent pastures. The soil developed from volcanic ash, and was highly P retentive. The rate of dissolution in soil of the PR component in PAPR and of PR applied directly was measured, together with bicarbonate extractable P. The priming effect of the monocalcium phosphate (MCP) component of PAPR on root growth was also investigated.Pasture yields showed that even the 30% acidulated PAPR was as effective as fully acidulated triple superphosphate (TSP), mainly due to the high reactivity of the PR used. The 50% acidulated PAPR tended to be superior to TSP. Soluble P in PAPR caused a marked increase in root proliferation, and dry matter yields were greater than predicted from the amounts of MCP and PR in PAPR. Directly applied PR was inferior to TSP in years 1 and 2 but was equal in year 4. (There was no pasture response to application of P fertilizers in year 3.)Dissolution rates of the PRs were determined applying a cubic model to PR dissolution data. The rate of dissolution increased with increasing acidulation and this is tentatively ascribed to increased root proliferation around PAPR granules and acidification of the clover rhizosphere during nitrogen fixation.  相似文献   

8.
The initial and residual fertilizer effectiveness of North Carolina RP (rock phosphate), monocalcium phosphate and partially acidulated RP (made from North Carolina RP at 30% acidulation), both granulated and non-granulated, were measured in a glasshouse experiment. Triticale (xTriticosecale) was grown for 30 days on a soil that had been adjusted to three pH values (4.2, 5.2 and 6.2). Two crops were grown with a six month interval between crops. The effectiveness of the different fertilizers was compared using relationships between (1) yield of dried tops and the amount of P applied and (2) P content (P concentration in tissue multiplied by yield) and the amount of P applied. For the first crop, relative effectiveness (RE) of the fertilizers was calculated relative to granulated monocalcium phosphate, the most effective fertilizer. Monocalcium phosphate was not applied to the second crop, so relative residual effectiveness (RRE) was estimated for each fertilizer relative to the residual effectiveness of granulated monocalcium phosphate.The relative effectiveness of granulated monocalcium phosphate (band application) was greater (RE = 1.00) than of North Carolina RP (0.01–0.02) and partially acidulated RP (0.45–0.76) for all three soil pH values for the first crop. Granulation and band application increased the effectiveness of monocalcium phosphate and partially acidulated RP, but reduced the effectiveness of North Carolina RP. Both non-granulated monocalcium phosphate and partially acidulated RP were less effective than granulated partially acidulated RP for both crops. For the second crop granulated monocalcium phosphate was most effective and the RRE of non-granulated partially acidulated RP (0.16–0.32) and North Carolina RP (0.19–0.28) was greater than for non-granulated monocalcium phosphate (0.12). For the more acidic soil the RE of non-granulated North Carolina RP was four times higher than for the high pH soil for the first crop and 60% higher for the second crop, but it was still poorly effective relative to granulated monocalcium phosphate. Granulated North Carolina RP was least effective among all the fertilizers for all soil pH values and for both crops.  相似文献   

9.
Phosphate rocks partially acidulated either with H3PO4 or H2SO4 were compared against SSP or TSP as phosphate fertilizers for permanent pasture. Eleven field trials were conducted over periods of up to 6 yrs. Fertilizers were surface applied annually. Initial soil pHw values ranged from 5.5–6.3 and Soil P retention from 25% to 97%. The PRs used for partial acidulation were unground or ground North Carolina PR, ground Khouribga PR, and a blend of ground PRs of North Carolina, Arad and Khouribga PRs. From the DM yields, fertilizer substitution values were calculated: fertilizer substitution value was the ratio of total P applied as superphosphate to total P as PAPR required to produce the same DM yield.Rates of dissolution of the PR component of PAPRs were also determined in soils collected from two trials.Agronomic results demonstrated that 30% acidulated phosphoric PAPRs (about 50% of total P as water-soluble P) were as effective as TSP, when the PR acidulated was from unground North Carolina PR. Results from one field trial indicated that when PAPR was from ground North Carolina PR, 20% acidulated product (water-soluble P 30–40% of total P) was equally effective as TSP. Replacement of ground North Carolina PR by a less reactive Khouribga PR did not appear to decrease the yield. Results indicated that per unit P released into soil solution, PAPRs were more efficient fertilizers than TSP. With annual applications, fertilizer substitution value of PAPR 30% tended to increase with time.Sulphuric PAPRs prepared from North Carolina PR were generally inferior to phosphoric PAPRs containing similar amounts of water-soluble P. This was attributed to the presence of CaSO4 coatings.Abbreviations DM Dry matter - PAPR Partially acidulated phosphate rock - PR Phosphate rock - SSP Single superphosphate - TSP Triple superphosphate  相似文献   

10.
Partially acidulated phosphate rocks were prepared from unground North Carolina phsophate rock and H3PO4 by (i) mixing phosphate rock with the requisite amount of H3PO4, (ii) mixing with a portion of the acid followed by adding the remaining acid during granulation and (iii) single-step acidulation and granulation. The degrees of acidulation were 20, 30, 40 and 50%. Only 20% and 30% acidulations were done by method (iii). The phosphate rock granulated readily on addition of H3PO4 either as in method (ii) or (iii) and the products did not need external drying before storage. The citric and water soluble P showed that from the viewpoint of acid-phosphate rock interaction all three methods of preparation were satisfactory. The granules were equally strong as or stronger than commercially available single or triple superphosphate samples tested. The percent degradation on abrasion was less than 4% compared to about 8% for superphosphate and 0.4% for triple superphosphate. A sand incubation study suggested an interaction in the partially acidulated phosphate rock between the monocalcium phosphate component and unreacted phosphate rock which initially increased the solubility of P.  相似文献   

11.
A glasshouse trial using lettuce as the test crop, and laboratory incubations were used to evaluate the influence of various nitrogen fertilizers on the availability of phosphate from an unfertilized loamy sand soil and from the same soil fertilized with Sechura phosphate rock or monocalcium phosphate. The order in which nitrogen fertilizer form increased plant yield and P uptake from soil alone and from soil fertilized with the rock was ammonium sulphate > sulphurised urea > ammonium nitrate > urea > potassium nitrate. For each rock application (both 30 and 60 mg/pot) and for soil alone, increased P uptake by the plant correlated well with decreased soil pH. In soil fertilized with the soluble P form, monocalcium phosphate, the form of the nitrogen fertilizer had little effect on plant P uptake. Subsequent laboratory incubation studies showed that increased dissolution of soil-P or Sechura phosphate rock did not occur until acidity, generated by nitrification or sulphur oxidation of the fertilizer materials, had lowered soil pH to below 5.5. A sequential phosphate fractionation procedure was used to show that in soils treated with the acidifying nitrogen fertilizers, ammonium sulphate and urea, there was considerable release of Sechura phosphate rock P to the soil, amounting to 42% and 27% of the original rock P added, respectively.  相似文献   

12.
Two experiments examined options for reducing the inputs of P and K fertilizers for hybrid squash (Cucurbita maxima L.) at Pukekohe, New Zealand. The first experiment examined the effects of elevating the NaHCO3-soluble P from 32 to 130 mg kg–1 and the exchangeable K from 140 to 350 mg kg–1 within strips from 0 to 0.75 m around rows of hybrid squash planted 1.5 m apart. From both P and K, crop yield increased as the width of the fertilized strip was increased up to 0.25 m, while wider fertilized strips had no further effect. These results followed similar effects on plant dry matter and tissue P or K concentration during early growth, and are explained in terms of the P and K accumulation by the crop, the decline during growth of the sensitivity of the crop to soil P and K fertility associated with declining rates of P and K uptake per unit length of root. Implications for fertilizer management for hybrid squash are also discussed.The second experiment compared the effects of partially acidulated phosphate rock and triple-superphosphate on soil P fertility, growth and yield of hybrid squash. Partially acidulated phosphate rock had smaller effects than those of triple-superphosphate on NaHCO3-soluble P levels in the soil, plant dry weight and tissue P concentration soon after emergence, and subsequently crop yield. On average, partially acidulated phosphate rock increased crop yield by about 70% of that following the application of the same quantity of P as triple-superphosphate. This lower effectiveness of partially acidulated phosphate rock for hybrid squash is explained in terms of its lower solubility and hence smaller effect on NaHCO3-soluble P in the soil during early growth, when the crop is most sensitive to soil P fertility.  相似文献   

13.
Twelve granular partially acidulated phosphate rock (PAPR) fertilizers were compared with unacidulated phosphate rocks (PR) and superphosphate at five rates of total P in the presence and absence of supplementary sulfate and plant residue recycling treatments in a long-term green-house experiment with lucerne (Medicago sativa L., cv. CUF101). The PAPRs were prepared from two PRs (Christmas Is. A grade and Duchess, Queensland) and acidulated at two rates (25% and 50% on an H2SO4 to single superphosphate basis) with either H2SO4 or H3PO4. Six harvests (each bulked from three cuttings) were collected over a 2-year period. It was generally found that lucerne response to PAPRs depended closely on their water-soluble plus citrate-soluble P contents which increased with increased degree of acidulation. The H3PO4 tended to yield more soluble P on acidulation of PR than H2SO4 and acidulation of Christmas Is. PR yielded more soluble P than did acidulation of Duchess PR. There was little evidence for enhanced availability of P due to action of the triple point solution in hydrolyzing granules on residual PR in those granules.  相似文献   

14.
Relationships between plant response and rates of dissolution of ground (< 150µm) North Carolina phosphate rock (NCPR), NCPR 30% acidulated with phosphoric acid (NCPAPR) and monocalcium phosphate (MCP) were assessed in pot experiments. The three fertilizers were incubated for 1, 50 and 111 days, at the rates of 75, 150 and 750µg P g–1 soil, using two soils with different P-retention capacity. After each period of incubation, four pots were set up from each treatment, and perennial ryegrass (Lolium perenne) was grown in a growth chamber for about six weeks to assess the agronomic effectiveness of the fertilizers. Results in dry matter yield and P uptake showed that immediately following application (1 day incubation), the MCP (solution) was supplying more P to plants than either the NCPR or the NCPAPR applied at the same rate. After 50 and 111 days of incubation, the NCPR and NCPAPR were just as effective in the lower P-retention Tekapo soil. The relative agronomic effectiveness (RAE) of the NCPR and NCPAPR compared with MCP was generally poorer in the higher P-retention Craigieburn soil than in the Tekapo soil shortly after application, but improved with time of incubation. Ryegrass responses to the application of the three fertilizers corresponded to the changing trends of exchangeable P in the soils, measured by the isotopic method.Regressions were made between plant P uptake and indices describing the intensity factor (water extractable P), quantity factor (Bray I P, Olsen P, 0.5M NaOH extractable P and isotopic exchangeable P) and the kinetic factor (Fin) of soil P supply to plants in the Tekapo soil. The percentage of variation in plant P uptake explained by individual indices was generally less than 80%, no matter which of the three single variable models, the Mitscherlich, the quadratic or the power function was fitted. However, more than 96% of the variation in plant P uptake in the Tekapo soil could be explained by the power function models involving two variables. The rate of P dissolution (Fin) determined by the isotopic dilution method was included in all the two variable models. The results suggest that assessment of soil P supply to plants should consider the kinetic factor in addition to the intensity and quantity factors, particularly where P fertilizers with differing solubility are applied.  相似文献   

15.
This review discusses and summarizes the latest reports regarding the agronomic utilization and potential environmental effects of different types of phosphate (P) fertilizers that vary in solubility. The agronomic effectiveness of P fertilizer can be influenced by the following factors: (1) water and citrate solubility; (2) chemical composition of solid water-soluble P (WSP) fertilizers; (3) fluid and solid forms of WSP fertilizers; and (4) chemical reactions of P fertilizers in soils. Non-conventional P fertilizers are compared with WSP fertilizers in terms of P use efficiency in crop production. Non-conventional P fertilizers include directly applied phosphate rock (PR), partially acidulated PR (PAPR), and compacted mixtures of PR and WSP. The potential impacts of the use of P fertilizers from both conventional (fully acidulated) and non-conventional sources are discussed in terms of (1) contamination of soils and plants with toxic heavy metals, such as cadmium (Cd), and (2) the contribution of P runoff to eutrophication. Best practices of integrated nutrient management should be implemented when applying P fertilizers to different cropping systems. The ideal management system will use appropriate sources, application rates, timing, and placement in consideration of soil properties. The goal of P fertilizer use should be to optimize crop production without causing environmental problems.  相似文献   

16.
The agronomic effectiveness (yield and P uptake) of twelve granular, partially acidulated phosphate rock fertilizers (PAPR) and two finely ground, unacidulated phosphate rocks (PR) were compared to that of a single superphosphate in a long-term greenhouse experiment with lucerne (Medicago sativa L., cv. CUF101), grown in a low P sorbing, moderately acid, sandy loam soil of moderate P status (Paleustaf). The PAPRs were prepared from two unreactive PRs (Christmas Is. A grade and Duchess rock from Queensland) and acidulated at two rates (25% and 50% on a H2SO4 to single superphosphate basis) with either H2SO4 or H3PO4. Additional products included H2SO4 PAPRs cogranulated with elemental S (10% w/w).Superphosphate was consistently superior to all PRs and PAPRs in agronomic effectiveness throughout this two-year study. The most effective of the PAPRs were those that were 50% acidulated with H2SO4 and cogranulated with elemental S; this type of fertilizer from both rocks was approximately 2/3 as effective as superphosphate when relative agronomic effectiveness indices (RAE) were calculated from cumulative yields. The increase in agronomic effectiveness relative to superphosphate (RAE value) by the partial acidulation of the PR could be attributed to its effect of increasing the P solubility in the PAPR. A curvilinear relationship existed between the RAE values of PRs and PAPRs, measured from cumulative yield or P uptake data, and the percentage of the total P in each fertilizer that was in a soluble (water + citrate soluble) form. Cogranulation with elemental S (10% w/w) significantly displaced this relationship upwards by increasing the RAE of H2SO4 PAPRs by more than 50%. The maximum cumulative recovery of applied P by lucerne tops after five bulked harvests (fifteen consecutive harvests) was 61.5%, which occurred at the low application rate of superphosphate. The decline in the substitution value of PRs for superphosphate, that occurred with increasing P rates tended to be offset both by increasing the level of acidulation and by cogranulating the PAPR with elemental S.  相似文献   

17.
Measuring pH of soil samples (at four to five depths down to 300 mm) collected three times from a long-term (16 years) field trial involving annual application of six forms of phosphate fertilizers at the rate of 30 kg P ha−1 yr−1 showed that soil acidity in all treatments, including the untreated control, increased with time. The rates of acidification (pH unit yr−1 during the first 10 years) in the topsoil (0–75 mm depth) were in the order, diammonium phosphate (0.038)>control, single superphosphate>Jordan partially acidulated phosphate rock (JPAPR)>North Carolina partially acidulated phosphate rock (NCPAPR), Jordan phosphate rock (JPR)>North Carolina phosphate rock (NCPR) (0.010). Of the 480 kg P ha−1 applied over the 16 year period, 71 and 57% of P from NCPR and JPR dissolved. The theoretical liming values derived from the dissolution of NCPR and JPR were 1698 and 1303 kg CaCO3 ha−1 respectively. Liming values of the two PRs calculated from the increase in soil pH over control treatment (ΔpH) down to 300 mm soil depth were 640 and 414 kg CaCO3 ha−1 for NCPR and JPR, respectively. The lower liming values estimated from the ΔpH method is probably due to proton transfer resulting from the secondary reactions of dissolved fertilizer phosphate with soil constituents, the unaccounted liming effect of the PRs below 300 mm soil depth and the lower soil pH buffering capacities measured from a short-term pH titration method used in the estimation of the liming values. The results of this long-term field study showed that continuous use of certain phosphate rocks (PRs) can significantly slow down the rate of acidification in pastoral soils.  相似文献   

18.
Ground samples of Nauru (N), Christmas Island A (X), Jordan (J) or North Carolina (NC) phosphate rocks (PRs) were acidulated with32P spiked sulphuric acid to produce single superphosphate (SSP) reaction mixtures. Subsequently, single superphosphatereactive phosphate rock (SSP-RPR) mixtures were manufactured by adding reactive phosphate rock (RPR) as either ground or unground NCPR or ground JPR to SSP reaction mixtures that had been denned for either 22 or 47 minutes after acid addition. The solubility of P in the final SSP-RPR products was assessed either by extraction with water, 2% citric acid, 2% formic acid or 1M neutral ammonium citrate (NAC), or by calculation of the exchangeable P content of the fertilizer by isotopic dilution techniques. The measurement of exchangeable P allowed calculation of the amounts of acidulated P in the ex-den SSP and the amount of RPR P acidulated on addition to ex-den SSP containing free phosphoric acid.Among the PRs used for SSP manufacture, the highest degree of acidulation at the ex-den stage was obtained for NCPR (92%) and the lowest was obtained for XPR (75%). As a consequence, the presence of XPR in the SSP reaction mixture decreased the amount of exchangeable P in the SSP-RPR mixtures. Whereas initially the conversion of PR P increased with time of acidulation at 22 minutes and 47 minutes (i.e. the time of addition of RPR) the differences in the degree of acidulation of PR in the ex-den SSP were not large and hence had no significant effect on the extractability of P in the SSP-RPR mixtures.The nature of the RPR added to the ex-den SSP reaction mixture had a significant effect on the solubility of P in the SSP-RPR mixtures. SSP-RPR mixtures with added unground NCPR or ground JPR had lower P solubility than when ground NCPR was added. RPR P constituted between 38 and 46% of the total P in the SSP-RPR mixtures and at acid/PR (A/R) ratios of 0.60 to 0.70, between 28 to 49% of the RPR P was acidulated by the free acid in the SSP reaction mixture during manufacture.The results also indicate that RPR mixtures made using ex-den SSP made from unreactive PRs will always contain more unreactive PR residue than those made with mature SSP. However, given the practical difficulties of producing the SSP-RPR mixtures with mature SSP, denning times should be extended for as long as practicably possible.  相似文献   

19.
Water insoluble residues (WIR) of unreactive phosphate rocks in single superphosphate-reactive phosphate rock (SSP-RPR) mixtures are considered to reduce the agronomic value of these mixtures. A technique using concentration ratios of elements to identify the quantities of WIR of ground North Carolina (NC), ground Nauru and as received NC phosphate rocks in a SSP-RPR was developed. Of 22 elements tested P/Sr ratios were found to be the only element ratios that could be used to distinguish between WIR's derived from Nauru and NC. P/Sr ratios in Nauru and NC were markedly different and provided a useful index for differentiating between the two rocks. During acidulation the P/Sr concentration ratio remained essentially constant in the WIR's from both rocks.Using the element ratio technique the percentage of total P in the SSP-RPR sample was determined to be 60-61% water soluble, 5% water insoluble Nauru, 2% water insoluble ground NC and 32-33% water insoluble as received NC.The element ratio technique developed in this study can be applied to partially acidulated P fertilizers made with rocks other than NC and Nauru provided elements which satisfy the same conditions as Sr in this study can be found.  相似文献   

20.
In Venezuela, 70% of the soils are acid with low natural fertility where phosphorus is the most limiting element together with nitrogen and potassium for plant growth. The efficiency of phosphate fertilization is low. Greenhouse and field experiments were conducted to evaluate the efficiency of natural and modified rock phosphate using conventional and isotopic techniques. An incubation experiment was done to measure changes in available P on application of different phosphate fertilizers at a constant rate of 100 mg P/kg in ten acid soils of agricultural importance in Venezuela. In the greenhouse, two experiments were conducted to relate P fixation to soil P availability and the response of an index plant (Agrostis sp.). A high variability in P fixing capacity of the soils (r1/Ro = 0.02–0.76) was observed with the same level of available P. This fixation index is defined as the proportion of the added radioactivity (32P) remaining in the soil solution after 1 min of exchange and a low fixing capacity is indicated by the values close to 1. The proportion of the total soil P that can possibly enter the soil solution and therefore is potentially available for plant uptake was measured using the traditional method (Bray I) and the isotopic method (E value). The high variability was also apparent in available P extracted by Bray I showing a range of 10 to 88% of the total P removed by the extracting solution. The incubation studies showed that the effectiveness of the P source for available P in the soil solution was related to their reactivity and the soil P fixing properties. The increase in the fixing capacity of the soils used caused a significant reduction in the E value, independent of the source of P used. A high positive and significant correlation between Bray I extracted P and the E value (r = 0.95) obtained from the different treatments, showed the relationship of the extractant for some forms of available P in soils where rock phosphate was applied. In the greenhouse experiment, the crop response was related to the P fixing properties of the soil, the initial availability and the solubility of the P source used. The P in plant derived from the fertilizer and the Utilization Coefficient decreased significantly as the P fixing capacity of the soils increases indicating a lower availability of P for the the index plant (Agrostis sp.). The P in plant derived from the P fertilizers calculated by using the specific activity of each treatment and the one of the check plot showed that triple superphosphate had the highest values with acidulated Riecito rock phosphate (40%) having intermediate values, and Riecito rock phosphate having the lowest value. The use of 32P techniques as a powerful method to study soil P dynamics and P uptake from different P sources and the effectiveness of phosphate rocks (natural and modified) produced in Venezuela with respect to the water-soluble P source (imported), are some of the practical implications of this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号