首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maximum acceptable weights for asymmetric lifting of Chinese females   总被引:2,自引:0,他引:2  
Wu SP 《Applied ergonomics》2003,34(3):215-224
This study used the psychophysical approach to evaluate the effects of asymmetric lifting on the maximum acceptable weight of lift (MAWL) and the resulting heart rate, oxygen uptake and rating of perceived exertion (RPE). A randomized complete block factorial design was employed. Twelve female college students lifted weights at three different lifting frequencies (one-time maximum, 1 and 4 lifts/min) in the sagittal plane and at three different asymmetric angles (30 degrees, 60 degrees, and 90 degrees ) from the floor to a 68-cm height pallet. This lifting experiment was conducted for a 1-h work period using a free-style lifting technique. The MAWLs for asymmetric lifting were significantly lower than those for symmetric lifting in the sagittal plane. The MAWL decreased with the increase in the angle of asymmetry. However, the heart rate, oxygen uptake and RPE remained unchanged. Though the MAWL decreased significantly with lifting frequency, both the physiological costs (heart rate and oxygen uptake) and rating of perceived exertion increased with the increase in lift frequency. The most stressed body part was the arm. Lifting frequency had no significant effect on the percentage decrease in MAWL from the sagittal plane values. On average, decreases of 5%, 9% and 14% for MAWL at 30 degrees, 60 degrees and 90 degrees asymmetric lifting, respectively, were revealed. This result was in agreement with the findings of Chinese males studied by Wu [Int. J. Ind. Ergonom. 25 (2000) 675]. The percentage decrease in MAWL with twisting angle for the Chinese participants was somewhat lower than those for Occidental participants. In addition, even though there was an increase in heart rate and RPE with the increase in the symmetrical lift angle for Occidental participants, it was different from the Chinese participants. Lastly, the 1991 NIOSH equation asymmetry multiplier is more conservative in comparison with the results of the present study.  相似文献   

2.
S P Wu 《Ergonomics》1999,42(7):952-963
The aim of this study was to investigate the psychophysical infrequent lifting capacity (maximum acceptable weight of lift, MAWL) for a Chinese population. A nested-factorial experimental design with a participant factor nested within gender was employed. Forty-one Chinese participants (29 males, 12 females) participated in the study. Two frequencies (one lift every 8 h and one lift every 5 min) and six lifting heights (floor to knuckle, floor to shoulder, floor to reach, knuckle to shoulder, knuckle to reach, shoulder to reach) were evaluated. The results are compared with prior studies and they lead to the following conclusions. (1) The MAWLs were significantly affected by both the lifting frequency and lifting height. For lifting frequency, the MAWLs decreased markedly by nearly 30% from one lift every 8 h to one lift every 5 min. For lifting height, the MAWLs of the F-K was the greatest of all six lifting heights, followed by F-S, K-S, F-R, K-R and S-R was the smallest. (2) The MAWLs for Chinese females are significantly lower, but proportionately similar, to the MAWLs for Chinese males. (3) The Chinese participants had smaller capacities compared with the Occidental participants, and the rate of decrease in MAWL for the Chinese participants was much sharper than that of Occidental participants. (4) The MAWL of Chinese females was about 54-58% of the Chinese males, it is somewhat lower than those of 60-70% of the Occidental participants.  相似文献   

3.
Wang MJ  Chung HC  Chen HC 《Human factors》2000,42(4):553-565
In manual material handling tasks, the handle serves as the interface between the human operator and the box (the materials). Handle angle design can affect both wrist posture and lifting ability. This study was designed to evaluate the effect of handle angle on maximal acceptable weight of lifting (MAWL), perceived whole-body exertion, whole-body workload, wrist posture, and perceived wrist exertion. The results indicate that handle angle had a significant effect on wrist posture and wrist rating of perceived exertion (RPE). A box with a 0 degrees handle angle induced the greatest ulnar deviation and the highest wrist RPE. A 75 degrees handle angle induced the greatest radial deviation and a relatively high wrist RPE. A 30 degrees handle angle resulted in the greatest MAWL and the lowest level of wrist RPE. Overall, these findings suggest that 30 degrees and 45 degrees handle angles can provide favorable coupling conditions for the cutout-type handhold container handle. Actual or practical applications include the ergonomic design of container handles for manual material handling tasks industry.  相似文献   

4.
《Ergonomics》2012,55(4):671-683
The psychophysical lifting capacity (MAWL) of twelve subjects was determined in this study. The subjects were all young Chinese males who performed lifting tasks in three lifting ranges (floor to knuckle, floor to shoulder, and knuckle to shoulder) and four lifting frequencies (one-time maximum, 1 lift/min, 4 lifts/min, and 6 lifts/min). The oxygen uptake (1/min) and heart rate (beats/min) were recorded while subjects were lifting. Upon completion of each lifting task, the subjects were required to rate their perceived exertion levels. The statistical analyses results indicated the following. Chinese subjects have smaller body size and MAWLs compared with past studies using the US population. The MAWLs decreased with an increase in lifting frequencies. The decrements of MAWL due to lifting frequencies were in agreement with the results of past studies. However, there were larger decreases due to lifting ranges. The MAWLs of the floor to knuckle height lift were the largest, followed by the MAWLs of the floor to shoulder height lift, and the MAWLs of the knuckle to shoulder height lift. The measured physiological responses were considered similar to those obtained in past studies. Subjects' perceived stress levels increased with the lifting frequency and the upper extremities received the most stress for the total range of lifting tasks. The comparisons of the Chinese MAWLs with the NIOSH lifting guidelines for limits (AL and MPL) indicated that the vertical discounting factor in the guidelines should be modified before the NIOSH limits can be applied to non-Western populations.  相似文献   

5.
《Ergonomics》2012,55(7):879-892
A laboratory study was conducted to determine the effects of asymmetric lifting on psychophysically determined maximum acceptable weights and maximum voluntary isometric strengths. Thirteen male college students lifted three different boxes in the sagittal plane and at three different angles of asymmetry (30,60 and 90°) from floor to an 81-cm high table using a free-style lifting technique. For each lifting task, the maximum voluntary isometric strength was measured at the origin of lift.

The maximum acceptable weights and the static strengths for asymmetric lifting were significantly lower than those for symmetric lifting in the sagittal plane for three box sizes (P<0·01). The decrease in maximum acceptable weight and static strength from the sagittal plane values increased with an increase in the angle of asymmetry (P < 0·01). Box size had no significant effect (P≥ 0·05) on the percentage decrease in maximum acceptable weight or voluntary isometric strength from the sagittal plane values. Correction factors of 7,15 and 22% for maximum acceptable weights and 12, 21 and 31% for static strength at 30, 60 and 90% of asymmetric lifting are recommended. Lastly, in the absence of epidemiological data, a comparison of maximum acceptable weight and static strength in the sagittal plane with the NIOSH guidelines for action and maximum permissible limits indicates that the guidelines may be conservative.  相似文献   

6.
This study investigated age-related biomechanical differences during asymmetric lifting. Eleven younger and twelve older participants were instructed to lift loads of different weights to an asymmetric destination. The trunk kinematics and low back moments were examined. The results showed that older adults adopted safer lifting strategies compared with younger adults. Specifically, the peak trunk sagittal flexion angle was 32% lower and the peak trunk transverse twisting angle was 22% lower in older adults compared with those in younger adults. It was also found that the average low back moment in the deposit phase was 32% higher in older adults than that in younger adults, most probably due to the age-related increased body weight. Based on these findings and the fact of age-related decreased muscle strengths, physical exercise programs were suggested to be more effective than instructions of safe lifting strategies in LBP risk reduction during asymmetric lifting for older adults. For younger adults, safe lifting strategy instructions might be effective to reduce risks of LBP.  相似文献   

7.
《Ergonomics》2012,55(2):143-159
The objective of this study was to identify the perceived exertion mechanisms (direct muscle force and whole body exertion) associated with the decision to change the weight of lift during the determination of the maximum acceptable weight of lift (MAWL). Fifteen males lifted a box of unknown weight at a rate of 4.3 lifts/min, and adjusted the weight until their MAWL was reached. Variables such as the predicted muscle forces and heart rate were measured during the lifting exertion, as well as the predicted spinal loading in three dimensions using an EMG-assisted biomechanical model. Multiple logistic regression techniques were used to identify variables that were associated with the decision to change the weights up and down prior to a subsequent lift. Results indicated that the force in the left erector spinae, right internal oblique, and left latissimus dorsi muscles as well as heart rate were associated with decreases in the weight prior to the next lift. It appears that a combination of local factors (muscle force) and whole body exertion factors (heart rate) provide the feedback for the perceived exertion when decreasing the weight. The up-change model indicated that the forces of the right erector spinae, left internal oblique, and the right latissimus dorsi muscles were associated with the decision to increase the weight prior to the next lift. Thus, local factors provide feedback during the decision to increase the weight when starting from light weights. Collectively, these findings indicate that psychophysically determined weight limits may be more sensitive to muscular strain rather than spinal loading.  相似文献   

8.
《Ergonomics》2012,55(10):1263-1272
Eighteen adult males (mean age 22·6 years, weight 78·6kg and height 176·6cm) participated in a study designed to investigate the effects of symmetrical and asymmetrical lifting on the maximum acceptable weight of lift and the resulting physiological cost. Each subject performed sixty different lifting tasks involving two lifting heights, three lifting frequencies and five containers. For each lifting task, the load was lifted either symmetrically (sagittal lifting) or asymmetrically (turning 90° while continuing to lift). The heart rate and oxygen uptake of the individuals at the maximum acceptable weight of lift were measured. At the end of the experiment, subjects also verbally indicated their preference for symmetrical and asymmetrical lifting. When lifting asymmetrically, subjects accepted approximately 8·5% less weight. There was, however, no difference in the physiological costs when lifting symmetrically or asymmetrically. Lifting asymmetrical loads also resulted in lower maximum acceptable weights. No difference in either oxygen uptake or heart rate was observed when the centre of gravity of the load was offset by 10·16 or 20·32 cm from the mid-sagittal plane in the frontal plane towards the preferred hand. All subjects indicated, verbally, that asymmetrical lifting tasks were physically more difficult to perform.  相似文献   

9.
The objective of this study was to identify the perceived exertion mechanisms (direct muscle force and whole body exertion) associated with the decision to change the weight of lift during the determination of the maximum acceptable weight of lift (MAWL). Fifteen males lifted a box of unknown weight at a rate of 4.3 lifts/min, and adjusted the weight until their MAWL was reached. Variables such as the predicted muscle forces and heart rate were measured during the lifting exertion, as well as the predicted spinal loading in three dimensions using an EMG-assisted biomechanical model. Multiple logistic regression techniques were used to identify variables that were associated with the decision to change the weights up and down prior to a subsequent lift. Results indicated that the force in the left erector spinae, right internal oblique, and left latissimus dorsi muscles as well as heart rate were associated with decreases in the weight prior to the next lift. It appears that a combination of local factors (muscle force) and whole body exertion factors (heart rate) provide the feedback for the perceived exertion when decreasing the weight. The up-change model indicated that the forces of the right erector spinae, left internal oblique, and the right latissimus dorsi muscles were associated with the decision to increase the weight prior to the next lift. Thus, local factors provide feedback during the decision to increase the weight when starting from light weights. Collectively, these findings indicate that psychophysically determined weight limits may be more sensitive to muscular strain rather than spinal loading.  相似文献   

10.
《Ergonomics》2012,55(9):1013-1031
A series of psychophysical lifting studies was conducted to establish maximum acceptable weights of lift (MAWL) for three supply items commonly handled in underground coal mines (rock dust bags, ventilation stopping blocks, and crib blocks). Each study utilized 12 subjects, all of whom had considerable experience working in underground coal mines. Effects of lifting in four postures (standing, stooping under a 1·5m ceiling, stooping under a l·2m ceiling, and kneeling) were investigated together with four lifting conditions (combinations of lifting symmetry and lifting height). The frequency of lifting was set at four per min, and the task duration was 15?min. Posture significantly affected the MAWL for the rock dust bag (standing MAWL was 7% greater than restricted postures and kneeling MAWL was 6·4% less than stooped); however, posture interacted with lifting conditions for both of the other materials. Physiological costs were found to be significantly greater in the stooped postures compared with kneeling for all materials. Other contrasts (standing versus restricted postures, stooping under 1·5?m ceiling versus stooping under l·2?m ceiling) did not exhibit significantly different levels of energy expenditure. Energy expenditure was significantly affected by vertical lifting height; however, the plane of lifting had little influence on metabolic cost. Recommended acceptable workloads for the three materials are 20·0?kg for the rock dust bag, 16·5?kg for the ventilation stopping block, and 14·7?kg for the crib block. These results suggest that miners are often required to lift supplies that are substantially heavier than psychophysically acceptable lifting limits.  相似文献   

11.
The maximum acceptable weights of lift (MAWL) of obese and non-obese participants were empirically investigated. Three obesity levels were considered: non-obese (18.5 kg/m(2)< or= body mass index (BMI)or= 40 kg/m(2)). Ten male and 10 female participants were recruited for each obesity level. The participants determined their MAWL for 18 different lifting task conditions (six lifting frequencies x three lifting heights). An analysis of variance (ANOVA) was conducted to determine the effects of obesity level, gender, lifting height, lifting frequency and their interactions on MAWL. Overall, the ANOVA results indicated that obesity does not reduce MAWL, and thus, suggested that the existing MAWL data can be used to accommodate both general and obese workers. However, further studies based on the biomechanical and physiological approaches are required to provide more complete understanding of obesity effects on lifting tolerance limits.  相似文献   

12.
It is known that maximum acceptable weight of lift (MAWL) decreases as the frequency of lifting increases. The purpose of this study was to quantify the relationship between lifting frequency and the MAWL, and to generate models for predicting the mean MAWLs for males and females from frequency of lifting. Published experimental studies that have reported the MAWL at different lifting frequencies were identified and regression methods were used to evaluate the relationship between the frequency of lifting and the MAWL. The best fitting models were logarithmic but they accounted for less than 50% of the variance. This reflects the heterogeneity of the experiments included. Normalising the MAWL to the MAWL at one lift per minute improved the predictive power of the models, accounting for more than 80% of the variance. Linear and power models for predicting work rate in kg/min showed even higher levels of accuracy.  相似文献   

13.
It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques--free style, stoop and squat lifting from knee to waist level--using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic parameters increased with the load mass lifted, and whether the magnitudes of the kinetic parameters were consistent across techniques when lifting MAWL. MAWL was significantly different between techniques (p = 0.03). The peak lumbosacral extension moment met both criteria: it had the highest association with the load masses lifted (r > 0.9) and was most consistent between the three techniques when lifting MAWL (ICC = 0.87). In conclusion, MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. PRACTITIONER SUMMARY: Tests of maximum acceptable weight of lift (MAWL) from knee to waist height are used to assess work capacity of individuals with low-back disorders. This article shows that the MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. This suggests that standardisation of lifting technique used in tests of the MAWL would be indicated if the aim is to assess the capacity of the low back.  相似文献   

14.
A study on maximum acceptable weight limit (MAWL) was conducted on ten adult Indian female building construction workers (CW) and eight household workers (HW), following the psychophysical methodology. All these workers were in the age group of 28–32 years. In this study, three different body heights (i.e. knee, waist and maximum reach) in sagittal plane were considered. The lifting frequency was fixed at 1 lift min−1. The subjects were instructed to lift the load from the ground. Each set of experiments was conducted for 45 min work period using free-style lifting technique. Subjects were using a load container with no handle, which is typically used in the field. Both the working heart rates (WHR) and pause heart rates (with 4.4 s interval) were collected for the entire duration. The subjects were requested to rate their perceived exertion level after each load adjustment. The average MAWL working heart rates of CW group are 106.2(±8.3), 108.7(±9.3) and 106.8(±11.0) beats min−1 for knee, waist and maximum reach heights, where the load levels were estimated as 18.2(±0.8), 17.4(±1.4) and 16.3(±1.2) kg, respectively. For HW group, the MAWL working heart rates obtained were 101.3(±8.0), 99.6(±6.2) and 105.2(±6.1) beats min−1 for knee, waist and maximum reach heights and the corresponding load levels were 15.4(±0.5), 14.4(±0.7) and 13.9(±1.2) kg, respectively. Both the groups psychophysically rated the work in moderate to heavy category. A best-fit curve was obtained from average normalized baseline pause heart rates with work duration (t) as Avg. N.H.R.base=k.t. It has been observed that with extrapolation of the work duration to 8 h from 45 min experimental observation, the heart rate would increase to about 6–8 beats min−1 for both the groups of workers. This equation can be used to approximate the effect of work-duration on heart rate.

Relevance to industry

MAWL study was performed on industrial female workers, which is rarely reported in the literature. Moreover, earlier studies were mainly conducted on the Americans. This study is focused on Indian population to compare the applicability of NIOSH guidelines in Indian context.  相似文献   


15.
Inclined surfaces, where both the lifter and load are on the slope, may be encountered in a jobsite situation. The purpose of this study was to determine if facing up or down a sloped surface (10 degrees and 20 degrees ) would affect maximal acceptable weights of lift (MAWL) using a 10 min psychophysical approach with symmetric freestyle technique at 4 lifts/min. Seventeen healthy men and 18 women determined floor to knuckle height MAWL while facing uphill, downhill, and on a level surface. Motion capture was also performed to examine sagittal plane joint angles and foot placement relative to a milk crate. Slope did not alter MAWL (p>0.05) with the men lifting more than the women in every condition (p<0.001) (25 kg vs. 15 kg, respectively). Foot placement relative to the box was altered by slope such that both horizontal position behind and vertical position below the box increased as slope changed from the downhill to uphill conditions (both p<0.001). Forward torso lean as well as hip, knee, and ankle (plantar) flexion generally decreased as slope changed from the downhill to uphill conditions (all p<0.001). Torso and knee motion appeared to be protected compared to the other joints, changing the least. Though trends were the same in both sexes, interactions did exist in vertical foot position and hip angle (both p0.001). In conclusion, the body is highly adaptive to floor slope, maintaining MAWL at least in the short term. However, while slight technique differences exist between men and women, care should be taken by all when facing uphill due to the tendency to stand further from the load horizontally and when facing downhill due to increased torso lean.  相似文献   

16.
The aim of this study was to assess the effect of an elastic lumbar back support on spinal loading and trunk, hip and knee kinematics while allowing subjects to move their feet during lifting exertions. Predicted spinal forces and moments about the L5/S1 intervertebral disc from a three-dimensional EMG-assisted biomechanical model, trunk position, velocities and accelerations, and hip and knee angles were evaluated as a function of wearing an elastic lumbar back support, while lifting two different box weights (13.6 and 22.7 kg) from two different heights (knee and 10 cm above knee height), and from two different asymmetries at the start of the lift (sagittally symmetric and 60 degrees asymmetry). Subjects were allowed to lift using any lifting style they preferred, and were allowed to move their feet during the lifting exertion. Wearing a lumbar back support resulted in no significant differences for any measure of spinal loading as compared with the no-back support condition. However, wearing a lumbar back support resulted in a modest but significant decrease in the maximum sagittal flexion angle (36.5 to 32.7 degrees), as well as reduction in the sagittal trunk extension velocity (47.2 to 40.2 degrees s(-1)). Thus, the use of the elastic lumbar back support provided no protective effect regarding spinal loading when individuals were allowed to move their feet during a lifting exertion.  相似文献   

17.
The aim was to identify which biomechanical and physiological variables were associated with the decision to change the weight of lift during the determination of the maximum acceptable weight of lift (MAWL) in a psychophysical study. Fifteen male college students lifted a box of unknown weight at 4.3 lifts/min, and adjusted the weight until their MAWL was reached. Variables such as heart rate, trunk positions, velocities and accelerations were measured during the lifting, as well as estimated spinal loading in terms of moments and spinal forces in three dimensions using an EMG-assisted biomechanical model. Multiple logistic regression techniques identified variables associated with the decision to change the weights up and down prior to a subsequent lift. Results indicated that heart rate, predicted sagittal lift moment and low back disorder (LBD) risk index were associated with decreases in the weight prior to the next lift. Thus, historical measures of LBD risk (e.g. compression, shear force) were not associated with decreases in weight prior to the next lift. Additionally, the magnitudes of the predicted spinal forces and LBD risk were all very high at the MAWL when compared with literature sources of tolerance as well as observational studies on LBD risk. Our findings indicate that the psychophysical methodology may be useful for the decision to lower the weight of loads that may present extreme levels of risk of LBD; however, the psychophysical methodology does not seem to help in the decision to stop changing the weight at a safe load weight.  相似文献   

18.
《Ergonomics》2012,55(2):135-149
With the number of musculoskeletal disorders increasing in the workplace, the potential exists for multiple injuries due to compensations. The objective of this study was to quantify the impact of non-lower back injuries on the trunk motions adopted by the individual during typical lifting tasks. A total of 32 injured subjects (eight for each injury group—shoulder, hand/wrist, knee and foot/ankle) and 32 matched (gender, height and weight) healthy subjects performed laboratory lifting tasks. The independent variables were task asymmetry (clockwise, sagittally symmetric and counter-clockwise), lift origin (waist, knee and floor) and box weight (2.27 and 6.82 kg). The dependent variables were peak trunk kinematics (as measured by the lumbar motion monitor) and moment arm between the box and lower back. The two injuries that had the greatest impact on the lower back kinematics were foot/ankle and hand/wrist. Individuals who suffered a foot/ankle injury produced greater three-dimensional trunk velocities (up to 10°/s) while individuals with hand/wrist injuries slowed down in the sagittal plane but increased the twisting velocity—specifically when lifting from the asymmetric shelves. Knee and shoulder injuries had limited impact on the trunk motions. Overall, the results indicate workplace design must take into account non-lower back injuries.  相似文献   

19.
《Ergonomics》2012,55(9):1216-1232
The aim was to identify which biomechanical and physiological variables were associated with the decision to change the weight of lift during the determination of the maximum acceptable weight of lift (MAWL) in a psychophysical study. Fifteen male college students lifted a box of unknown weight at 4.3 lifts/min, and adjusted the weight until their MAWL was reached. Variables such as heart rate, trunk positions, velocities and accelerations were measured during the lifting, as well as estimated spinal loading in terms of moments and spinal forces in three dimensions using an EMG-assisted biomechanical model. Multiple logistic regression techniques identified variables associated with the decision to change the weights up and down prior to a subsequent lift. Results indicated that heart rate, predicted sagittal lift moment and low back disorder (LBD) risk index were associated with decreases in the weight prior to the next lift. Thus, historical measures of LBD risk (e.g. compression, shear force) were not associated with decreases in weight prior to the next lift. Additionally, the magnitudes of the predicted spinal forces and LBD risk were all very high at the MAWL when compared with literature sources of tolerance as well as observational studies on LBD risk. Our findings indicate that the psychophysical methodology may be useful for the decision to lower the weight of loads that may present extreme levels of risk of LBD; however, the psychophysical methodology does not seem to help in the decision to stop changing the weight at a safe load weight.  相似文献   

20.
《Ergonomics》2012,55(5):653-668
The aim of this study was to assess the effect of an elastic lumbar back support on spinal loading and trunk, hip and knee kinematics while allowing subjects to move their feet during lifting exertions. Predicted spinal forces and moments about the L5/S1 intervertebral disc from a three-dimensional EMG-assisted biomechanical model, trunk position, velocities and accelerations, and hip and knee angles were evaluated as a function of wearing an elastic lumbar back support, while lifting two different box weights (13.6 and 22.7 kg) from two different heights (knee and 10 cm above knee height), and from two different asymmetries at the start of the lift (sagittally symmetric and 60°asymmetry). Subjects were allowed to lift using any lifting style they preferred, and were allowed to move their feet during the lifting exertion. Wearing a lumbar back support resulted in no significant differences for any measure of spinal loading as compared with the no-back support condition. However, wearing a lumbar back support resulted in a modest but significant decrease in the maximum sagittal flexion angle (36.5 to 32.7°), as well as reduction in the sagittal trunk extension velocity (47.2 to 40.2°s-1). Thus, the use of the elastic lumbar back support provided no protective effect regarding spinal loading when individuals were allowed to move their feet during a lifting exertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号