首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文对泡沫铝芯体夹层板材的准静态和动态力学性能进行了试验研究.在SHPB设备上测试了不同冲击速度时的动态压缩响应,为了对比,也测试了静态压缩力学性能.结果表明泡沫铝芯体夹层板准静态和动态压缩过程均具有明显的三阶段特征.即弹性区、屈服平台区和致密区.随着应变率的增加,泡沫铝芯体夹层板的动态屈服强度增加,具有明显的应变率效应.  相似文献   

2.
采用胶粘法制备大尺寸钢质泡沫铝夹心板,测试夹心板的三点弯曲强度,分析面板厚度、芯层厚度对夹心板弯曲性能的影响规律,研究弯曲载荷作用下的夹心板失效机理。结果表明:钢质泡沫铝夹心板可承受很高的弯曲载荷,夹心板抗弯强度随着芯层泡沫铝厚度的提高而提高。增加钢面板的厚度,夹心板抗弯强度整体呈增强趋势。当面板厚度为8 mm、芯层厚度为50 mm时,夹心板的极限抗弯强度可达66.06 kN。芯层泡沫铝内泡壁表面的大尺寸裂纹是夹心板在弯曲载荷作用下失效的主要原因;采用熔体发泡法制备的泡沫铝板材,因冷却强度过大而导致的附加应力使泡壁的强度下降,也是影响夹心板力学性能的主要因素。  相似文献   

3.
研究集中载荷作用下金属泡沫夹芯梁的准静态压入力学行为。考虑到夹芯梁表板弯曲和拉伸的相互作用,提出了一个金属泡沫夹芯梁局部压入大挠度变形行为的新理论模型,并详细讨论芯材剪切对局部压入行为的影响。为了验证理论模型的有效性,对夹芯梁的局部压入行为进行有限元数值模拟,理论预测结果与有限元模拟结果吻合得很好。结果表明:当压入挠度超过夹芯梁表板厚度后,塑性膜力控制着夹芯梁的局部压入行为。  相似文献   

4.
Fast-moving machine tool assemblies should be light and rigid. Because of the lightweight construction and the dynamic loads these assemblies are very often susceptible to vibrations. Aluminum foam sandwiches are laminates with an aluminum foam core and compact cover sheets. The foam cores possess a high-energy absorption capacity. Machine tool assemblies made of aluminum foam sandwiches offer very high flexural stiffness, together with comparatively light weight. Vibrations generated by machining are damped very well due to the cellular structure of foam. The manufacturing process of foam sandwiches is in general well understood, but there are still some open questions concerning the mechanisms of bonding and adhesion between cover sheets and foam core. This paper tries to give answers to these questions.  相似文献   

5.
随着武器科技的发展,冲击波对掩体内部人员的伤害已经不能忽视。研发了新型自制泡沫铝复合材料,并通过实验得出泡沫铝复合材料的应力-应变曲线,采用数值模拟,对泡沫铝复合材料在爆炸荷载下,其抗冲击缓冲特性进行研究。结果表明,冲击波在泡沫铝复合材料中传播时,显示出明显的衰减特性和良好的吸能性。泡沫铝复合材料可作为新型抗冲击缓冲材料和结构简化。  相似文献   

6.
An open-cell aluminum foam filled with silicate rubber (AFFSR) was fabricated by infiltration of the liquid silicate rubber into the open-cell aluminum foam. The experiments were carried out to investigate the compressive behavior and energy absorption characteristics of the material. It is found that the stress--strain response of the AFFSR exhibits five regions including two plateau regimes, which is quite different from the stress--strain curves of many unfilled metallic foams that usually exhibit three distinct regions. The plastic deformation of the AFFSR is prolonged because of the filled silicate rubber, compared with the aluminum foam without such a filler. The AFFSR also exhibits a higher energy capacity than the aluminum foam without filler. Additionally, for the prolonged plateau region in the stress--strain curve, the energy absorption efficiency of the AFFSR maintains a high level (above 0.6) over a wide strain range from 3% to 60%.  相似文献   

7.
The aluminum/polypropylene/aluminum (A1/PP/A1) sandwich sheets have been developed for potential application of these materials for automotive body panels in future high performance automobiles with significant weight reduction. The tensile properties of the A1/PP/A1 sandwich sheets were examined in the present study as well as those of the aluminum skin and the polypropylene core at room and elevated temperatures. It was found that the sandwich sheet with hard skin and low volume fraction of the polypropylene core showed the highest tensile strength, whereas that with soft skin and high volume fraction of the polypropylene core showed the lowest strength. The sandwich sheet with hard skin showed much smaller work hardening rate than that with soft skin. All sandwich sheets showed serration phenomena on their flow curves. However, the magnitude of serration was significantly diminished in the sandwich sheet with high volume fraction of polypropylene core. The tensile strength of the sandwich sheet was compared with that calculated from the rule of mixture based on the tensile strengths of the aluminum skin and the polypropylene core. The results showed that there were good agreements between the experimentally obtained values and the calculated values. From the tensile tests at elevated temperatures, it was found that the tensile strength of the sandwich sheet with high volume fraction of polypropylene core was more sensitive to temperature than that with low volume fraction of polypropylene core. During tensile deformation of the sandwich sheet, it was found that fracture first took place in the aluminum skin and then in the polypropylene core and at the interface. The interface strength was found to be strong enough to avoid premature debonding at the interface before fracture took place in the entire sandwich sheet.  相似文献   

8.
The infiltration casting process for producing aluminum foam includes three steps: preparing precursor using NaCI particles, infiltrating molten aluminum and cleaning NaCI precursor. Defects occur during the preparation of aluminum foam with superfine open-cell structure, and influence the pore structure and performance of aluminum foam materials. The types of the defect and their forming mechanisms are analyzed in this paper. The defects include point defects and linear metal defects, and are caused by the defects in salt precursor and the insufficient infiltration of molten aluminum into precursor. With the choice of proper precursor preparation method and infiltration process parameters, the complete aluminum foam with superfine pores could be achieved.  相似文献   

9.
Tensile property of Al-Si closed-cell aluminum foam   总被引:6,自引:3,他引:3  
1Introduction The unique properties of metallic foams make them useful in a number of potential application fields including damping,electromagnetic shielding,heat exchange,sound insulation,sound absorption,and energy absorption[1?4].The closed-cell alumi…  相似文献   

10.
复合碳酸盐作发泡剂制备泡沫铝的工艺研究   总被引:1,自引:0,他引:1  
采用熔体发泡法制取泡沫铝,利用DSC和DTG两种方法,分析了CaMg(CO3)2的热分解特性,同时系统地研究了发泡剂含量、温度及搅拌时间对泡沫铝孔结构的影响.结果表明,发泡剂加入质量分数为2%~3%,搅拌时间1 min~2 min,发泡温度为660℃~710℃的条件下,可以制取孔结构均匀、孔隙率高的泡沫铝合金.  相似文献   

11.
Cell-structure and mechanical properties of closed-cell aluminum foam   总被引:4,自引:0,他引:4  
1 INTRODUCTIONMetalfoamsexhibitunusualmechanical,ther mal,acoustic ,damping ,electricalandchemicalprop ertiesthatcannotbefoundinsolidmaterials .Thosespecialpropertiesmayleadtoavarietyofapplicationsinstructuralandfunctionalproducts.Closed cellalu minumfoamisalight massstructuralmaterialofgreatpromise .Itsdensityisonlyafractionofthatofthecorrespondingbulkmetal,butitsstrengthissuf ficientlyhightobeusedintheautomobileindustry ,buildingindustryandtransportation .Examplesoftheirapplicationsinc…  相似文献   

12.
The vesicant problem during the process of preparing closed-cell aluminum foam by molten body transitional foaming process was discussed and the effect of granularity and addition of TiH2 on porosity of closed-cell aluminum foam was investigated. The static compressive behavior of closed-cell aluminum foam and the influence of porosity on static compressive property of closed-cell aluminum foam were researched as well. The results show that with increasing granularity of TiH2, the porosity of closed-cell aluminum foam firstly increases and then decreases gradually, the granularity should be controlled in the range of 38-74μm which can result in higher porosity. The porosity of closed-cell aluminum foam increases with the increasing addition of TiH2, and the addition of TiH2 should be controlled fi'om 1.5% to 2.5% which can result in homogeneous cell and moderate strength of closed-cell aluminum foam. The compressive process of closed-cell aluminum foam obviously displays linear elastic phase, plastic collapse phase, and densification phase, and the compressive strength grows with decreasing porosity.  相似文献   

13.
This paper presents an infiltration casting technique for manufacturing big size open-cell aluminum foam boards. The principle and key technologies of infiltration casting are also analyzed. Based on the previous practice of the small size aluminum foam production, the die for preparing big size aluminum foam boards is designed and manufactured. The experiments on aluminum boards of 300 mm × 300 mm × (20-75) mm, with the pore size ranging from 1.0 to 3.2 mm and average porosity of 60%, have been performed. The experimental results show that a reliable infiltration process depends critically on the pouring temperature of the molten AI-alloy, the preheated temperature of the mould and salt particles and vacuum. Current research explores the possibility of large-scale manufacturing and application of the aluminum foams.  相似文献   

14.
针对泡沫铝塑性加工问题,分析了泡沫铝室温单向压缩和单向拉伸状态下的塑性变形和微观组织演变机制,研究了在室温和高温状态下泡沫铝的塑性成形.结果表明,泡沫铝冷成形受零件复杂程度、孔洞组织结构、极限变形程度限制,只能进行一些简单的整体成形和局部的塑性成形;高温有利于泡沫锚的成形,且不破坏泡沫铝的结构.高温降低了泡沫铝的屈服应力,减小了变形限制,从而使变形易于进行;温度控制是泡沫铝高温成形过程中的重要影响因素,对TiH2发泡的泡沫铝结构件进行成形加工,加工温度必须保持在同相线温度以下,以免破坏孔结构.  相似文献   

15.
利用常见的落锤冲击试验机和自行设计的夹具装置,研究6061铝合金材料在冲击载荷作用下的变形断裂行为。结果表明:6061铝合金受冲击载荷时的断裂行为与准静态拉伸相比无明显变化,损伤形式仍是由晶界处的微孔洞连接形成微裂纹,宏观上仍产生明显颈缩,试样的断裂面与拉伸轴方向大约成45°角。摆锤高度不同,试样表面的变形带不同,摆锤高度为141°时,出现了"白色变形带"。微观断口是由韧窝组成,冲击速度越大,韧窝越小。  相似文献   

16.
氢化锆熔体发泡法制备小孔径泡沫铝   总被引:3,自引:0,他引:3  
以ZrH_2为发泡剂,采用熔体发泡法制备铝基小孔径泡沫铝,分析其制备过程及影响孔结构的因素;优化实验室制备泡沫铝的工艺条件;借助图形分析方法表征泡沫铝的孔径分布,并与TiH_2制备的泡沫铝进行了对比;采用改进座滴装置研究铝合金与氢化物的润湿行为.结果表明:ZrH_2较适合制备小孔径泡沫铝;优化工艺条件为:Al 650 g,增粘剂Ca 的加入量2.5%,发泡剂ZrH_2的加入量1.0%,发泡温度680 ℃,搅拌时间1.5 min,保温时间2.5 min;制备的泡沫铝孔径均匀,平均孔径小于1.5 mm;ZrH_2在铝合金中的润湿特点是导致泡沫铝孔径较小的主要原因.  相似文献   

17.
Longitudinal and transverse mechanical properties and energy absorption properties of foam-filled square tubes under quasi-static loading conditions were studied. The foam-filled thin-walled square tube was fabricated with aluminum tube as its shell and closed-cell Al-Mg alloy foam as its core. The results indicated that the plateau region of the load-displacement curve exhibited a marked fluctuant serration which was clearly related to the formation of folds. The longitudinal deforming mode of foam-filled square tube was the same as that of the empty tube, but the fold number of foam-filled square tube was more than that of the empty tube. The longitudinal compression load and energy absorption value of foam-filled square tube were higher than the sum of that of aluminum foam (alone) and empty tube (alone) due to the interaction between tube and filler. In transverse direction, the compression load and energy absorption ability of foam-filled square tubes were significantly lower than those in longitudinal direction.  相似文献   

18.
Sound absorption and insulation property of closed-cell aluminum foam   总被引:1,自引:0,他引:1  
The closed-cell aluminum foams (specimen p=0.31 g/cm^3, diameter of 100 nun, and thickness of 20 mm for sound absorption testing; specimen p=0.51 g/cm^3, length of 1 240 mm, width of 1 100 mm, and thickness of 30 mm for sound insulation testing) were prepared by the method of molten body transitional foaming process. Its sound absorption property under frequency of 160-2 000Hz and the sound insulation property under frequency of 100-4 000 Hz were tested. The sound absorption results show that the sound absorption property is much better under middle frequencies than that under low and high frequencies. The sound absorption coefficient climbs when frequency increases from 160 Hz to 800 Hz and then drops when frequency is increased from 800 Hz to 2 000 Hz. The function of the sound absorption mainly depends on the Helmholtz resonator, the microphone as well as cracks of closed-cell aluminum foam. The sound insulation experiments show that the sound reduction index (R) is small under low frequencies, and large under high frequencies; the weighted sound reduction index (Rw) and the highest sound reduction index (R) can reach around 30.8 dB and 43 dB, respectively.  相似文献   

19.
Porosity of aluminum alloy in lost foam casting process   总被引:7,自引:0,他引:7  
1 INTRODUCTIONThelostfoamcasting (LFC) processiscalledasthe 2 1stcenturytechnology .Itsformingisdifferentfromthatoftheconventionalempty cavitycastingmethod[1,2 ].ForaluminumalloyinLFC process,pouringtemperatureofaluminummeltismuchhigherthanthatoftheempty cavity…  相似文献   

20.
研究了一种在泡沫铝制备过程中可替代TiH2及ZrH2类发泡剂的新型发泡粉末的热分解行为,探讨该新型发泡剂加入量及发泡温度等因素对泡沫铝孔隙率的影响。研究表明:该新型发泡材料具有分解温度范围宽及分解过程缓慢的特点。当采用该发泡剂时,泡沫铝制备过程无需额外加入金属Ca类增粘剂;随发泡温度的升高,泡沫铝的孔隙率先升高后下降;随发泡剂量的增多,发泡体中的无泡层逐渐减少,当发泡剂的加入量在1.40%以上时,发泡体中的无泡层消失;在发泡温度740℃、发泡剂加入量1.40%~2.20%、搅拌时间3min、保温发泡时间5min的条件下,可以制备出孔径2~5mm,孔隙率60%~80%,孔隙基本均匀且无实心体的泡沫铝。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号