共查询到18条相似文献,搜索用时 125 毫秒
1.
在临床文本中,时间关系对于研究患者的病情和治疗方案至关重要。而目前的时间关系抽取基于简单时间比较,仅判断4种时间关系。考虑中文临床文本中还存在大量的复杂时间和关系,现有时间关系抽取任务不能全部表达临床事件的时间关系,参考CTO时间本体将抽取任务扩展为复杂时间关系抽取。同时针对中文临床文本语义的复杂性,提出了融合依存句法和实体信息的模型学习中文句子的整体信息和实体信息。该模型针对句内时间关系和句间时间关系设计依存特征矩阵引导BERT的编码器聚合全局信息和局部信息,然后导出句子表征向量,在此基础上使用内积和哈达玛积提取丰富的实体信息,最终将句子信息和实体信息导入分类器判断时间关系。与基线模型和其他深度学习模型相比,证明了该模型的有效性。 相似文献
2.
基于DOM树的可适应性Web信息抽取 总被引:6,自引:2,他引:4
Web信息抽取通常采用的是一种归纳学习方法,从给定的训练样本网页中学习到抽取规则,这种方法虽然能够准确地抽取出信息,但是当网站的模版发生改变后,必须重新获得抽取规则,因而这种抽取器的维护成本比较高,可适应性差.提出一种新的可适应性Web信息抽取方法,该方法首先通过聚类方法获取商品在网页中频繁出现的关键词组,然后利用网页的DOM树结构来确定包含这些关键词的信息块,从而实现Web信息的自动抽取.对大量商业网站进行信息抽取的实验表明,该算法不仅能有效抽取出商品信息,而且是一种与站点结构无关的可适应性信息抽取方法. 相似文献
3.
句子匹配是自然语言处理的一项基本任务,可应用于自然语言推理、释义识别等多个场景。目前,主流的模型大多采用注意力机制来实现两个句子之间单词或短语的对齐。然而,这些模型通常忽略了句子的内在结构,没有考虑文本单元之间的依存关系。针对此问题,提出了一种基于依存句法和图注意力网络的匹配模型。设计两种建模方式将句子对建模为语义图。使用图注意力网络对构建的图进行编码以进行句子匹配。实验结果表明,提出的模型可以较好地学习图结构,在自然语言推理数据集SNLI和释义识别数据集Quora上分别达到了88.7%和88.9%的准确率。 相似文献
4.
评论对象抽取是情感分析的重要研究内容。基于语义词典,从评论对象的类别视角出发,运用语义相似度和相关度计算方法,该文提出用于评价对象抽取的七种新的语义特征。评价对象和评价词之间通常存在句法依存关系,并且评价词往往带有情感倾向,将句法依存分析和评价词识别结合,提出句法情感依存特征抽取方法,忽略无情感词和微情感词的句法依存关系,提高评价对象抽取的准确率。使用条件随机场模型,在SEMEVAL比赛的三个领域数据集上进行实验,新的语义特征和句法情感依存特征组合的F1分数比SEMEVAL比赛限制性系统最好成绩平均高3.78%,比非限制性系统最好成绩平均高2%,证明了所提特征的有效性。 相似文献
5.
针对现有的深度学习模型难以提取在线评论的丰富语义信息,从而难以准确提取文本情感的问题,提出了一种基于句法依存关系和注意力机制的多特征多重融合情感分类模型MF-SDAM(multi-feature multiple fu-sion sentiment classification model based on syntactic dependency and attention mechanism).该模型首先利用句法依存关系提取在线评论的属性-观点对信息,然后利用动态词嵌入模型BERT获取文本的动态特征向量表示;接着,基于双通道的特征提取策略,分别利用卷积神经网络(TextCNN)和融入注意力机制的双向长短期记忆网络(Att-BiLSTM)提取文本的局部和全局语义特征,为进一步提取特征的全局语义信息,将文本特征与Att-BiLSTM的输出特征进行拼接,并结合注意力机制对情感特征进行加权;最后,基于多融合方式互补的特征融合策略对局部语义特征和全局语义特征进行特征融合,减少关键信息丢失的问题.选取外卖、酒店领域的三个真实公开的在线评论数据集进行效果验证,实验结果表明,MF-SDAM针对在线评论情感分类任务的性能表现优异,其准确率和F1值在大多数情况下都优于10个基准模型,且对于不平衡数据集具有较好的鲁棒性. 相似文献
6.
7.
属性级情感三元组抽取(aspect sentiment triplet extraction,ASTE)任务主要是从句子中检测出属性词及其对应的评价词和情感倾向,然而当抽取多词属性词和评价词时,无法准确地抽取出全部的单词;当面对重复的属性词和评价词时,以往的研究很难学习到 相似文献
8.
Web信息抽取通常采用的是一种归纳学习方法,从指定的模版网页中归纳到抽取规则,这种方法虽然能够准确地抽取出信息,当网站的模版发生改变后,必须重新获得抽取规则,因而这种抽取器的维护成本比较高,可适应性差。本文针对这一难题,提出一种基于DOM树的可适应性多信息块Web信息抽取,该方法首先通过NekoHtml将网页解析成DOM树,然后确定包含关键词组的信息块,从而实现Web信息抽取。经过大量网站的实验证明该方法适用于不同站点的信息抽取,并且能对多信息块的Web页面进行信息抽取。 相似文献
9.
句子级别细粒度的事件检测任务旨在对触发词进行识别与分类。针对现有事件检测方法中存在的过度平滑及缺乏依存类型信息的问题,提出了一种基于图卷积网络融合依存信息的事件检测方法。该模型首先使用双向长短期记忆网络对句子进行编码,同时根据依存分析构建多阶句法图和依存句法图;然后利用图卷积网络融合句子的依存信息,从而有效地利用多跳信息和依存标签信息。在自动文本抽取数据集上进行实验,在触发词识别和分类这两个子任务中分别取得了81.7%和78.6%的F1值。结果显示,提出的方法能更加有效地捕获句子中的事件信息,提升了事件检测的效果。 相似文献
10.
因果关系作为一种重要的关系类型在关系推理等许多领域中起着至关重要的作用,因此对因果关系进行抽取是文本挖掘中的一项基本任务.与传统文本分类方法或关系抽取不同,采用序列标注的方法可以抽取文本中的因果实体并确定因果关系方向,不需要依赖特征工程或因果背景知识.主要贡献有:1)拓展句法依存树到句法依存图,将图注意力网络应用到自然语言处理中,引入了基于句法依存图的图注意力网络的概念;2)提出Bi-LSTM+CRF+S-GAT因果关系抽取模型,根据输入的词向量生成句子中每个词的因果标签;3)对SemEval数据集进行修正与拓展,针对其存在的缺陷制定规则重新标注实验数据.在拓展后的SemEval数据集上进行了大量的实验,结果表明:该模型在预测准确率上比现有最优模型Bi-LSTM+CRF+self-ATT提高了0.064. 相似文献
11.
12.
针对电子病历构建过程中难以捕捉信息抽取任务之间的关联性和医患对话上下文信息的问题,提出了一种基于Transformer交互指导的联合信息抽取方法,称为CT-JIE(collaborative Transformer for joint information extraction)。首先,该方法使用滑动窗口并结合Bi-LSTM获取对话中的历史信息,利用标签感知模块捕捉对话语境中与任务标签相关的信息;其次,通过全局注意力模块提高了模型对于症状实体及其状态的上下文感知能力;最后,通过交互指导模块显式地建模了意图识别、槽位填充与状态识别三个任务之间的交互关系,以捕捉多任务之间的复杂语境和关系。实验表明,该方法在IMCS21和CMDD两个数据集上的性能均优于其他基线模型和消融模型,在处理联合信息抽取任务时具有较强的泛化能力和性能优势。 相似文献
13.
14.
15.
目前在方面级情感分类研究中,图卷积网络被应用于句法依赖树上构建方面词与上下文词的依赖关系。但是由于句法依赖树的不稳定性和语句的复杂性与不规范表达,这种改进较为有限。为解决上述问题,提出了一种基于混合图神经网络模型。在该模型中,为了深度提取方面词与上下文词的依赖关系,设计了应用于句法依赖树的多层图卷积网络。同时为提取词级依赖特征,设计了具有残差连接的图注意力网络(Res-GAT),其主要思想为以词级依赖关系特征作为补充,结合句法依赖关系进行方面级情感分类。通过在五个经典数据集上实验,证明了该模型相较于基线模型具有更优异的分类能力。 相似文献
16.
Relation extraction has been widely used to find semantic relations between entities from plain text. Dependency trees provide deeper semantic information for relation extraction. However, existing dependency tree based models adopt pruning strategies that are too aggressive or conservative, leading to insufficient semantic information or excessive noise in relation extraction models. To overcome this issue, we propose the Neural Attentional Relation Extraction Model with Dual Dependency Trees (called DDT-REM), which takes advantage of both the syntactic dependency tree and the semantic dependency tree to well capture syntactic features and semantic features, respectively. Specifically, we first propose novel representation learning to capture the dependency relations from both syntax and semantics. Second, for the syntactic dependency tree, we propose a local-global attention mechanism to solve semantic deficits. We design an extension of graph convolutional networks (GCNs) to perform relation extraction, which effectively improves the extraction accuracy. We conduct experimental studies based on three real-world datasets. Compared with the traditional methods, our method improves the F 1 scores by 0.3, 0.1 and 1.6 on three real-world datasets, respectively. 相似文献
17.
从非结构化文本中联合提取实体和关系是信息抽取中的一项重要任务。现有方法取得了可观的性能,但仍受到一些固有的限制,如错误传播、预测存在冗余性、无法解决关系重叠问题等。为此,提出一种基于图神经网络的联合实体关系抽取模型BSGB(BiLSTM+SDA-GAT+BiGCN)。BSGB分为两个阶段:第一阶段将语义依存分析扩展到语义依存图,提出融合语义依存图的图注意力网络(SDA-GAT),通过堆叠BiLSTM和SDA-GAT提取句子序列和局部依赖特征,并进行实体跨度检测和初步的关系预测;第二阶段构建关系加权GCN,进一步建模实体和关系的交互,完成最终的实体关系三元组抽取。在NYT数据集上的实验结果表明,该模型F1值达到了67.1%,对比在该数据集的基线模型提高了5.2%,对重叠关系的预测也有大幅改善。 相似文献
18.
基于图神经网络的推荐算法通过从图中获取知识生成节点的特征表示,提高了推荐结果的可解释性.然而,随着推荐系统原始数据规模的不断扩大,大量包含语义信息的文本数据没有得到有效利用.同时图神经网络在融合图中邻居信息时没有区分关键节点,使得模型难以学习到高质量的实体特征,进而导致推荐质量下降.本文将图神经网络与语义模型相结合,提出一种融合语义信息与注意力的图神经网络推荐算法.该算法基于SpanBERT语义模型处理实体相关的文本信息,生成包含语义信息的特征嵌入,并将注意力机制引入到基于用户社交关系以及用户-项目交互的影响传播融合过程中,从而实现用户和项目两类实体特征的有效更新.在公开数据集上的对比实验结果表明,本文所提出的方法较现有基准方法在各项指标上均有所提升. 相似文献